Variable Stiffness Actuation based on Dual Actuators Connected in Series and Parallel

Prof. Jae-Bok Song (jbsong@korea.ac.kr)
Intelligent Robotics Lab.
(http://robotics.korea.ac.kr)

Depart. of Mechanical Engineering,
Korea University, Seoul, Korea

Various Variable Stiffness Devices at Korea Univ.

Serial-type Dual Actuator Unit
- Serial connection
- Position control
- Stiffness control
- Force estimation
- Collision safety
- Environment estimation

Parallel-type Dual Actuator Unit
- Parallel connection
- Antagonistic actuation
- Variable stiffness
- Parallel actuation

Safety Joint Mechanism
- Passive compliance
- 1 rotational DOF
- Joint type
- pHRI

Safety Link Mechanism
- Passive compliance
- 3 rotational DOFs
- Link type
- pHRI
Dual Actuator Unit (DAU)

- Redundant Actuation
 - Simultaneous control of position and stiffness for one DOF
 - Improved safety

- Two types of DAUs

Variable Stiffness Actuators

- **VSA-II** (variable stiffness actuation)
 - Univ. of Pisa (Bicchi, 2008)
 - Torsion spring + 4-bar linkage

- **ANLES** (actuator with nonlinear elastic system)
 - Tokai Univ. (Koganezawa, 2006)
 - Torsion spring + nonlinear guide
Research Trends: Compliant Actuators

- MACCEPA (mechanically adjustable compliance and controllable equilibrium position actuator)
 - Vrije Univ. Brussel (Ham, 2008)
- Antagonistically actuated joint with quadratic series-elastic actuation
 - Georgia Tech. (DeWeerth, 2005)
 - Tension spring and curved surface

Serial-type Dual Actuator Unit (S-DAU)
S-DAU: Introduction

- S-DAU
 - Connected in series
 - Based on planetary gear train

- Features
 - Positioning actuator (PA) with high gear ratio
 - Stiffness modulator (SM) with low gear ratio
 - Indep. control of position and stiffness
 - Force estimation
 - Collision safety
 - Stiffness estimation
 - Environment estimation

S-DAU: Principle of Operation

- Planetary gear train
 - Two inputs & One output
 - Useful for actuator unit with dual inputs

- S-DAU based on planetary gear train
S-DAU : Principle of Operation

- No contact with environment

\[\theta_{DAU} = \theta_{PA} + \theta_{SM} \]

- Contact with environment

\[\tau_{SM} = k_{SM} \cdot \theta_{SM} \]
\[\tau_{SM} = K_{T,SM} \cdot i_{SM} \]
\[i_{SM} = \frac{k_{SM} \cdot \theta_{SM}}{K_{T,SM}} \]

S-DAU : Construction

- Planetary gear train
- Gear ratio
 - 690:1 for PA, 56:1 for SM
- Version 1: 48x61x110 mm, 500g (including clutch mechanism)
- Version 2: 26x61x110 mm, 450g
S-DAU : Position Control / Stiffness Control

![Diagram of S-DAU](image)

Response to stiffness change

Joint stiffness (Nm/deg)

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Measured Force</th>
<th>Estimated Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>7</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>8</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>9</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>0.55</td>
<td>0.55</td>
</tr>
</tbody>
</table>

KOREA UNIVERSITY Intelligent Robotics Lab

S-DAU : Force Estimation

- **Force estimation**
 - No need for an expensive F/T sensor for force control

 \[\tau_{SM} = k_{SM} \cdot \theta_{SM} \quad \Rightarrow \quad \tau_{SM} = F^T \cdot F \]

 - \(k_{SM} \) : user specified
 - \(\theta_{SM} \) : measured by the SM encoder

![Diagram of S-DAU with force estimation](image)

Measured force

![Graph of force over time](image)

Estimated force

![Graph of force over time](image)

KOREA UNIVERSITY Intelligent Robotics Lab
S-DAU: Collision Safety

- **Joint Stiffness**: \(k_{SM} = k_{SM}^0 - \beta_{vel} \cdot \Delta \omega \)
 - \(k_{SM}^0 \): initial stiffness, \(\Delta \omega = \omega_{SM} - \omega_o \)
 - Example
 - \(\omega_{SM} = 270 \text{ deg/s} \), \(\omega_o = 170 \text{ deg/s} \),
 - \(k_{SM}^0 = 1.5 \text{ Nm/deg} \), \(\beta_{vel} = 0.01 \),
 - \(k_{SM} = 0.5 \text{ Nm/deg} \) just after collision

S-DAU: Parallel Manipulator with Two S-DAUs

- **Experimental Setup**
 - 5-linkage parallel manipulator with two S-DAUs.
 - Independent position and stiffness controllers based on DSP 2812.
 - Verifies S-DAU’s force estimation ability using a F/T sensor.
S-DAU : Stiffness Estimation

- Stiffness estimation for hard material
 - Applied force : 3N → 10N
 - Stiffness of environment K_e:
 - 3.5kN/m (estimated), 3.75kN/m (measured)
 - Stiffness of manipulator K_{SM}: about 100N/m

- Stiffness matrix \rightarrow stiffness ellipse in Cartesian space
- Low stiffness in normal direction \rightarrow Good control of contact force
- High stiffness in tangential direction \rightarrow Good performance on trajectory tracking
- Stiffness ellipse adaptable to surface normal using the estimated force
S-DAU : Surface Estimation

- Surface estimation

Parallel-type Dual Actuator Unit (P-DAU)
P-DAU: Introduction

- **P-DAU**
 - Connected in parallel
 - Antagonistic actuation

- **Features**
 - Linear spring + Cam-follower
 - Nonlinear stiffness characteristics
 - Compact design
 - Parallel actuation available
 - Combined torques from dual actuators

P-DAU: Principle of Operation

- **Antagonistic actuation**
 - Basic principle of human motion
 - Two muscles for control of a single joint.
 - Muscles modeled as nonlinear springs.

[Diagram showing the principle of operation with low and high stiffness settings]
Cam-Follower Mechanism
- Compact design.
- Cam profile → Various nonlinear characteristics.

Cam-follower in P-DAU

Variable Stiffness mechanism of P-DAU
- Antagonistic actuation
- Cam-follower + Linear spring → Nonlinear spring
P-DAU: Variable Stiffness Mechanism

- **Low Stiffness** (→ Small compression of spring)
 - Initial position
 - CCW rotation
 - CW rotation
 - Output link
 - Contact with upper plate
 - Contact with lower plate

- **High Stiffness** (→ Large compression of spring)
 - Initial position
 - CCW rotation
 - CW rotation
 - Output link
 - Contact with upper plate
 - Contact with lower plate

P-DAU: Parallel Actuation

- **Parallel actuation**
 - **Antagonistic actuation**: Only a single actuator can apply a force to an object.
 - **Parallel actuation**: Both actuators can apply forces to an object.
 - Combined torque from dual actuators
 - No variable stiffness

- **Actuation mode**
 - **Antagonistic actuation**
 - **Parallel actuation**
 - Clutching point
 - Torque
 - Antagonistic actuation
 - Parallel actuation
 - Actuation mode

KOREA UNIVERSITY

Intelligent Robotics Lab
P-DAU: Parallel Actuation

- Clutch mechanism
 - Based on cam-profile.
 - Operated by the difference in position between upper and lower plates.

P-DAU: Construction

- Actuation Mechanism of P-DAU
 - Compact design → power transmission by two internal ring gears

Clutch Mechanism of Parallel-type Dual Actuator Unit
Intelligent Robotics Lab
KOREA UNIVERSITY
P-DAU : Construction

• φ70x62 mm, 470g (without motors)
• Maximum payload: 5Nm
• Variable stiffness range: 0.01 ~ 0.6 Nm/deg
• Response time : < 1sec
 (from min. stiffness to max. stiffness)

P-DAU : Performance

- Antagonistic Actuation Mode

- Parallel Actuation Mode
Safe Joint Mechanism (SJM)

SJM : Introduction

- Safe robot arm (Compliant robot arm)
 - Active compliance
 - Collision detection by sensors
 - Control of actuators
 - Slow response, noise, malfunction

- Passive Compliance
 - Spring, flexible link/joint, soft covering
 - Absorbing collision force
 - Fast response, high reliability but positioning inaccuracy.
SJM: Principle of Operation

- Safety vs Performance
 - Tradeoff
 - Low stiffness for safety
 - High stiffness for performance

- Our approach
 - Nonlinear stiffness characteristics → Only by passive mechanical elements
 - Normal operation → Stiff arm for accurate positioning
 - Collision situation (Large impact) → Soft arm for shock-absorbing

Nonlinear spring system

- 4-bar linkage + Pre-compressed spring
- Transmission angle of 4-bar linkage
 → Low spring force for static equilibrium
- Threshold force: Transmitted force ≥ Spring force
SJM : Performance

![Graph showing force and acceleration over time for SJM and w/o SJM with and without collision]

SJM : Current Status

- Safe manipulator
 - 6 DOF manipulator with SJM
 - SJM installed at the elbow joint.

<table>
<thead>
<tr>
<th>3rd version</th>
<th>2nd version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Size : Ø65*25mm
- Weight : 125g
- Torque : 8.5 Nm
- Range : ± 25°
- HIC : below 100

- Size : Ø75*35mm
- Weight : 180g
- Torque : 10 Nm
- Range : ± 23°
- HIC : below 100
Thank you!!

Contact: Prof. Jae-Bok SONG at jbsong@korea.ac.kr