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ABSTRACT 

Constraint gradient projective method for stabilization of 
constraint violation during integration of constrained multibody 
systems is in the focus of the paper. Different mathematical 
models for constrained MBS dynamic simulation on manifolds 
are surveyed and violation of kinematical constraints is 
discussed. As an extension of the previous work focused on the 
integration procedures of the holonomic systems, the constraint 
gradient projective method for generally constrained 
mechanical systems is discussed. By adopting differential-
geometric point of view, the geometric and stabilization issues 
of the method are addressed. It is shown that the method can be 
applied for stabilization of holonomic and non-holonomic 
constraints in Pfaffian and general form. 

 
1. INTRODUCTION 

During dynamical simulation of constrained multibody 
systems, a violation of system kinematical constraints is the 
basic source of time-integration errors and frequent difficulty 
that analyst have to cope with. As will be surveyed in the 
following chapters, if the governing equations are not turned 
into so called minimal form, but dynamic simulation is based 
on the mathematical models expressed via redundant 
coordinates, a constraint violation stabilization method have to 
be applied during integration procedure. Baumgarte 
stabilization method that minimizes violations can be applied 
for this purpose, but this algorithm is dependent on empirical 
feedback gains and has some limitations [1]. Different methods 
that provide full stabilization of system constraints are 
discussed in [2, 3, 4]. 

The stabilized integration procedure, whose stabilization 
step is based on projection of the integration results to the 
underlying constraint manifold via post-integration correction 

of selected coordinates, is proposed and compared with similar 
integration schemes in [5]. The integration procedure is 
compatible with many ODE integrators and provides full 
stabilization of system constraint violation, but its utilization is 
confined to the holonomic systems only. As an extension of the 
previous work, a further elaboration of the projective 
stabilization step described in [5] is reported in this paper. 
Based on the gained insight, the geometric and stabilization 
properties of the projection algorithm are addressed when 
routine is applied for stabilization of holonomic and non-
holonomic constraints in Pfaffian and general form. In the case 
of holonomic systems it is shown that, once the subvector is 
optimally partitioned at the position level, it can be used 
automatically for stabilization at the velocity level as well. The 
next question is: would it be possible to apply the proposed 
algorithm in the framework of simulation procedures of non-
holonomic systems ? It is shown that in the case of non-
holonomic systems, the optimally partitioned subvectors can 
generally have a different structure for ‘positions’ and 
velocities.  
 
 
2. UNCONSTRAINED  MBS ON MANIFOLDS 

Unconstrained multibody system (MBS) is an autonomous 
Lagrangian system. If n DOF is assumed, the system evolution 

in configuration space 
�

R  is described (by definition) by 
Lagrangian equations [6] 
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By taking differentiable manifold approach, the 

configuration space 
�R  is considered to be a manifold �

M covered by coordinate system ( )W[  (in mathematical 
jargon of modern differential geometry: locally covered by 
chart [ ). The solution of (1) is a dynamical trajectory 

( )W[[ ��
=:T  of the system in n-dimensional manifold of 

configuration 
�

M . 

With every point on manifold of configuration, M∈[ , 

the n dimensional tangent space M�7  is affiliated, where 

system virtual displacements [  and velocities [�  are 

contained, M�[ 7∈ , M�[ 7∈d , M�[ 7∈� . The manifold 

M  and the union of all tangent spaces at the various points x 
make another, 2n dimensional, manifold called tangent bundle, 

MM
M
*

n

:
∈�

�77 , covered by the coordinates 

[[ �, : ( ){ }MMM 	[[[[ 77 ∈∈= �� ,:, [7] (being 
mathematically not very rigorous, tangent bundle can be 
observed as a velocity phase space known from ‘traditional’ 
approach).   

Manifold M  is not a vector space. By adopting system 
generalized mass matrix ( )[0  (positive definite) as a 
Riemannian metric on the manifold of configuration [8], a 

scalar product in the each tangent space M
7  is given by 

( ) ( )][\]\ � 0� T, =  , M
]\ 7∈,  [9]. Now, with the 

metric so defined, the tangent space M
7  (‘the fiber of the 
tangent bundle at point x’) becomes a local Euclidean vector 

space spanned by covariant basis ��Ĵ , ��� �J �� JJ ˆˆ ⋅= . By 

introducing a reciprocal contravariant basis 
�
�Ĵ  [10], the 

vectors in tangent spaces can be expressed using their 

contravariant and covariant representations �
�[ �J[ ˆˆ �� = , 

[ ]�[�� =[ , 
�

�[ �J[ ˆˆ �� = , [ ]�[�� =*[ , [ ]Tˆ,.....,ˆ
1 ���� JJ* = . 

The infinitesimal distance between two points on manifold (the 
system kinematical line element) is defined (scalar product in 

manifold tangent space) by 
 !

!  [[JV ddd 2 = , 

( ) [ ]" #J=[0 . 

Being dependent both on [  and [� , the system kinetic 

energy ( ) RM →
$7(N :,[[ �  is defined on tangent bundle 

%7M . It is a quadratic, positive definite form on the each 
tangent space 
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By following a standard procedure, Lagrangian equations 

(1) can be turned into the 2n ODE form 
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= *f 4
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which solution is the integral curve of the vector field 
( )[f  on tangent bundle (’velocity phase space’) for a set of 

Cauchy data ( ),[,0W . 

 

3. GEOMETRIC PROPERTIES OF CONSTRAINTS 
�����+RORQRPLF�FRQVWUDLQWV�
�

Holonomic constraints  
 

    ( ) �[ =W,) , ( ) -.W RRR →×:,[                (3) 
that are imposed on the system restrict system configuration 

space (‘positions’ ): a trajectory ( )W[[ //
=:T  ‘moves’  on the 

n-r dimensional constraint manifold )(W01 −S , 

( ){ }�[[ =Φ∈=− WW23
,,)( MS ,  ( )00)(,0 WWW 45 −∈≥ S[ , 

at the velocity level they induce constraint equation 
 

          ( )[[6 =−= 7W )) �,*                                     (4) 

that is linear in velocities. If constraints are scleronomic 
(constraints do not depend on time explicitly, i.e. ( ) �[ =) ), 

the constraints at velocities take a form ( ) �[[8 =�*) , which 

determine [̂�  as a tangent to the position constraint manifold, 
( ) U=

∂
∂= )(rank *

[
[9 )) . 

The system is said to be a holonomic one and posses n-r 
degrees of freedom (DOF). 

The constraint matrix ),(* W[:)  can be written in the form 

[ ]**
1

T* ,....,),( ;W MM) =[< ,  [ ]== =*M ,  
>

> ?Ĵ1̂ =M  . The 

vectors @MM ˆ...,,1̂  represent gradients to the constraint 
hypersurfaces, determined in the configuration space by the 
equations ( ) �[ =W,) , i.e. [ ]0grad1̂ == AM , … , 

[ ]0gradˆ == BCM . 

The vectors *DM  are linearly independent and span r 

dimensional constraint subspace 
E
FC  [11]. Kinematically 

admissible virtual displacements [  are restricted to the n-r 

dimensional tangent space 
GIH J7 SK that is orthogonal to 

L
MC .  

Together, subspaces 
L
MC  and 

L7 SM span fiber of tangent 

bundle of unconstrained system 
N7MO  (tangent space) at point 

x: 0=
PQIR P7 SS CS � , 

TUTIV U 77 MCS WWW =* . Thus, 
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orthogonal-complement matrix ),( W[5 , ( ) [ ]XYW −= UU[5 ,.....,, 1 , 

that satisfy complementarity equation �[5[Z =),(),(* WW) , 

can be determined where [\ −UU ˆ,.....,1̂  are basis vectors of 
]I^ _7 S` [12].  

In the case of scleronomic constraints, the system 
velocities (not just system virtual displacements [ ) are 

entirely contained in 
aIb c7 Sd and can be expressed with respect 

to the basis [ ]T
1 ˆ,.....,ˆ ef −= UU* g only (instead of 

representation h*[[ Tˆ �� =  that is expressed via basis i*  that 

‘covers’  whole unconstrained tangent space 
j7Mk ), i.e.  

   l*][ Tˆ �� = , ]5[ �� = .                     (5),   (6)  
In the equation (5) system velocities are represented via 
independent generalized velocities ]�  (virtual speeds [11]). 

If the constraints are rheonomic (constraints do depend 

explicitly on time, a constraint manifold 
mn −S  ‘moves’  within 

o
M ), the velocities are not totally sunk in 

pIq r7 Ss  and can be 

expressed via 
pIq r7 Ss  basis and additional vector ),( W[  (7) 

due to the time dependency of 
tu −S . The time derivative of 

(7) yields (8) by means of which accelerations are constrained  
 

( )W,[]5[ += ��      (7),    

( )W,[]5]5[ D������� ++=        (8) 
 

 
�����1RQ�KRORQRPLF�FRQVWUDLQWV�
�

If, beside h holonomic constraints (3), the additional nh 
non-holonomic constraints  

 
       ( ) �[[ =W,, �<             (9) 

are imposed on the system: 
 

a) they do not restrict system configuration space (system 

constraint manifold 
vw −S  maintains the same dimension, 

KU = ) 
 
b) they impose additional velocity constraints on 

holonomic constraint manifold tangent bundle S7 ,  
xIy zzxxIy zx|{zx 77 SS −−− ⊂∈ }}[� . 

      If non-holonomic constraints are linear in velocities, 
i.e. can be given in Pfaffian form  

                                                      

( ) ( ) �[[[% =−= WW ,,* E< � ,   (10) 
the system constraint equations can be written as follows:  
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As it was the case with systems that posses only holonomic 

constraints, the orthogonal-complement matrix �|�5  that 

satisfy complementarity equation �5� =�|��|�*)  can be 

determined via numerical methods described in literature [12, 
13, 14]. 

 
 

4. MATHEMATICAL MODELS OF CMS 
����� 0RGHOV� ZLWK� LQKHUHQW� FRQVWUDLQW� YLRODWLRQ�
SUREOHP 

To avoid high-index DAE formulations, mathematical 
model for dynamic simulation of multibody systems with 
imposed holonomic constraints (3) is often shaped as a 
differential-algebraic system (DAE) of index 1 (redundant 
coordinates formulation, ideal constraints’  reaction forces are 
assumed) [1, 16] 
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 where Lagrangian equations of the first type 
 

      ( ) ( ) ( )WW ,,, *T* [[4[[[ � ��� =+ )0 ,   
�

R∈[   , 
�� ×∈Φ R*�  ,  [ ] U=*rank �)    (14) 

 
and the constraint equations at the acceleration level (time 

derivative of (4)) 
 

   
( )[[� =��W,*) ,                                    (15)      

                              
are put together. System (13) is uniquely solvable for the 

set of consistent initial values. It can be integrated in time to 
obtain kinetic motion of the system as well as constraint 
reactions. Although constraints at the acceleration level will be 
immanently satisfied since (15) is included in mathematical 
model (13) and will be explicitly solved during integration, the 
numerical non-stability of (15) can induce constraints violation 
at the both position and velocity level [9]. 

If the constraint reactions are not of interest, by explicit 
elimination of  [17] DAE can be transformed to 2n ODE, 

( )[Z[ =� , [ ]TTT Y[[ = , whose solution determine time 
evolution of the system. Although analytical solution curves for 
consistent initial conditions will move on tangent 
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bundle
����7 −− S (having satisfied all constraints imposed on 

the system), a numerical solution will tend to drift away from 
constraint manifold. 

DAE system (13) can be transformed to ODE also by 
projecting dynamical equations (14) to the local tangent space �I� �7 S� , thus eliminating system constraint reactions: 

                                         

( ) ( ) ( ) ( )WWW ,,,, *TT [[4[5[[[5 ��� =0              (16) 
 
By adding acceleration equation (15), the governing 

equations can be put in the form of  n  ODE of  2. order [18]  
 

                      
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




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


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

 45[5
�

*T

*

T

��)
0

.              (17)   

 
As it was case with (13), during straightforward integration 

of (17) the constraints might be violated at the both position 
and velocity level.  

If dynamical model is shaped by employing a set of 
independent velocities ]�  (re-shaping (16) by using (7) and (8) 
where D  disappears in the case of scleronomic constraints), the 
governing equations become n-r ODE system [3, 19]   

                                                

( )D����� +−= ]5545]55 00 TTT .         (18) 
 
Although ODE system (18) has the same dimension as 

system modelled in minimal form (19), there is a big difference 
in geometry of coordinate representations, which strongly 
influence utilization characteristics of the two formulations. 

The configuration coordinates that correspond to the 
generalized velocities ]�  generally do not have ‘physical’  
meaning since they, except for the special cases, do not 

parameterize constraint manifold 
�� −S . Therefore, 

introduction of a set of independent velocities ]�  assures no 
constraint violation at the velocity level, while the constraints at 
the configuration (‘positions’ ) level are still prone to integration 
errors. 

If, beside holonomic constrains, the additional non-
holonomic constraints given in Pfaffian form (10) are imposed 
on the system, the procedures [9, 11], similar to those described 
above, allow for shaping of mathematical models given by (13), 
(17), (18).  

 

�����0LQLPDO�IRUP�IRUPXODWLRQ�
The governing equations of holonomic CMS can be turn 

into the minimal form of n-r ODE (the equations of motion) 
that are not prone to constraint violations of any kind only if, 
based on ( ) �[ =W,) , a new set of configuration coordinates 

�I� �W R∈)(\  that describe constraint manifold can be 

established )(W�  −S (thus determining system configuration). 
In this case, equations of motion can be shaped in the minimal 
form [11, 15] 

                                                    

( )WW ,,),( * \\4\\ ¡¡ ��� =0 .        (19) 

 

Since 
¢I£ ¤W R∈)(\  so defined parameterize )(W¤¢ −S , the 

numerical integration errors do not produce system constraint 
violation of any kind (but do affect system kinetic motion, 
however). 

 
 

5. CONSTRAINT GRADIENT PROJECTIVE METHOD 
FOR STABILIZATION OF CONSTRAINT VIOLATION 

If system governing equations are not turned into minimal 
form (19) but dynamic simulation is based on the mathematical 
models (13), (17), or (18) and whole vector of system 
redundant coordinates is being integrated, a constraint violation 
stabilization method have to be applied during integration 
procedure. Another, well known, algorithm for integration of 
redundant systems is the coordinates partitioning procedure 
[20]. 

The stabilization algorithm proposed in [5] is based on the 
projection of the step-post-integration results (during 
integration via redundant coordinates, constraint violation is 
likely to occur) to the constraint manifold in the course of 
simulation. 

The starting point of the simulation procedure is 
mathematical model in form (17). After integration phase, the 
projective stabilization step at the position level is 
accomplished by correction of the dependent coordinates sub-

vector d[ , providing thus the shifting of system state-point x 

back to the constraint manifold 
¥¦ −S  (iterative solving of (3) 

that brings x in accordance with (3) up to the required accuracy, 
d[  is to be treated as unknown variable). The procedure is then 

repeated at the velocity level by correcting d[�  to bring [�  in 
accordance with (4). As a stabilization step final result, the 
time-integration values [[ ,�  are projected to the constraint 

manifold tangent bundle S7  satisfying thus constraints of the 
system fully. As will be seen later, a crucial point of the 

algorithm is appropriate selection of sub-vectors d[  and d[�  to 
provide the optimal stabilization effect of the procedure. 

Criteria for the coordinates selection can be expressed 
geometrically: basically, every selection that returns subvector 

of dependent coordinates d[  which basis vectors have non-

zero projections on the constraint subspace 
§
¨C  (the 

corresponding UU ×  submatrix of constraint matrix ©*)  is 
non-singular) is correct one and can be used for stabilization 

procedure. Consequently, the basis vectors of variables i[  
have projections on tangent space of constraint manifold 

r-nSª7  that is complement to 
«
¬C . If the extracted subvectors 

do not satisfy specified conditions, the selection is not a valid 
one and the calculation will fail. Technically, if the system is 

holonomic and constrained on manifold 
­® −S , the coordinate 

selection can be performed via pivoting operations on the 

constraint matrix ¯*) , ( ) U=°*rank ) , by means of which 
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the subvectors of dependent and independent coordinates ±R∈d[ and 
²|³ ´R∈i[  is extracted (coordinate partitioning 

algorithm). For the purpose of optimal selection, a projective 
criterion to the coordinate partitioning method can be utilized 
[21]. 

 

�����,QWHJUDWLRQ�HUURUV�DORQJ�PDQLIROG��
The main problem that may occur during stabilization 

procedure is an inadequate coordinate selection that may have a 
negative effect on the integration accuracy along the constraint 
manifold. Although, as it was explained, every partitioning that 
returns acceptable subvectors can be used for the stabilization 
projective step, a non-optimal choice of the coordinate 
subvectors may cause an increase of the numerical errors along 
the manifold during stabilization part of the integration 
procedure (numerical errors along constraint manifold affect 
system evolution in time i.e. its kinetic motion). If this happens, 
a correction of the constraint violation will be accomplished at 
the expense of the ‘kinetic motion’  accuracy obtained by the 
system variables [[ ,�  ODE integrators. 

�
5.1.1. Stabilization of the system configuration 
constraints  
 

The ‘mechanism’  of emerging of the numerical errors 
along configuration manifold, because of an inadequate 
partitioning during the stabilization procedure of holonomic 
systems, is outlined in Fig. 1, where an illustrative example 

2R∈[ , 1S  is discussed [22].  

 
 
    Fig. 1:  Correction of the configuration constraint violation 

Assuming that, starting from   , an integration of ODE 
gives result   instead of exact position   , a projection on 

the constraint manifold 1S  by adjusting coordinate 1[  
(solving ‘position’  i.e. configuration constraint equation (3) 

along 1[ curve by treating 1[  as dependent i.e. unknown 

variable) yields result   that is consistent to the constraint. If 

instead of 1[ , the variable 2[  was chosen to be a dependent 

coordinate, an adjustment of the integration result along 2[  

curve would yield solution , which is also consistent to the 

constraint but contains considerable error along the manifold 
1S .  

A remedy for the problem of an inadequate selection of 
dependent coordinates has been offered in [21], where a 
projective criterion to the coordinate partitioning method is 
introduced. For a given set of coordinates of unconstrained 
system, the criterion allows for the optimal choice of 
dependent/independent coordinates which, consequently, gives 
opportunity to minimize integration error along manifold. 

The main idea is to determine those r coordinates which 

direction vectors 
µ
¶Ĵ  deliver the biggest relative projections to 

the 
·
¸C  and select them as dependent variables which will be 

adjusted during the stabilization procedure. By correcting the 
coordinates whose direction vectors align well with the 
constraint gradients (that point directions toward constraint 

surfaces and span 
¹
ºC ), it is ensured that the correction 

procedure will shift a state-point of the system ‘as direct as 
possible’  to the constraint hypersurfaces, minimizing thus an 
error along constraint manifold. Along this line, in the example 

shown in Fig. 1, the variable 1[  is chosen to be a dependent 

coordinate since its basis vector 1º̂J  delivers a big projection on 
¹
ºC = [ ]0grad 1 =  (in this illustrative example the constraint 

subspace 
¹
ºC  is one-dimensional, spanned by [ ]0grad 1 = ). 

Generally, the stabilization projective algorithm [5] that 
utilizes gradient criterion as outlined above is similar to the 
algorithms known from the optimization procedures, where 
constraint gradients are determined within the framework of 
optimization algorithms in order to detect the ‘fastest’  
directions toward constraint surfaces [23]. 

Note: if the system illustrated in Fig. 1 was modeled in 
minimal form (19), the formulation would yield a mathematical 
model with a single coordinate; the coordinate direction vector 
would be orthogonal in every moment to [ ]0)(grad 1 =[  
and fully projected to the one-dimensional tangent space of the 

constraint manifold 1S . 
 
 

5.1.2. Stabilization of the velocity constraints  

The projective criterion for coordinate selection can be 
applied for minimization of the numerical errors in the process 
of correction of constraint violation at the velocity level as well. 
Here, an application of the criterion enhances a definiteness of 
the velocity constraints algebraic system (4), providing thus a 
better numerical accuracy of the stabilization procedure. This 

feature is illustrated by an example 3R∈[ , 

{ }0)(, 1
31 =∈= [[ RS , shown in Fig. 2. Because of 

simplicity, scleronomic system and orthogonal basis 
1º̂J , 2»̂J , 3»̂J  are assumed. 

If the velocity equation (4) is written in the ‘vectorial’  
form, for the analysed case it reads   

 

                      0ˆ grad 1 =⋅[� .                               (20) 
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In (20), the components of 1 grad  represent coefficients 
of the linear algebraic system that, for a general mathematical 
model, is given by (4). By applying the projective criterion and 

choosing 3[� , which direction vector 3»̂J  (in this ‘academic’  

illustrative situation) is almost collinear to 1 grad , as a 
dependent coordinate, the potential numerical errors in 

independent coordinates 1[�  and 2[�  would not affect 

considerably the solution 03 ≈[�  of the velocity constraint 
equation (20). This is because of the small magnitudes of the 

coordinates of 1 grad  along the basis vectors 1»̂J  and 2»̂J  

(small projections of 1 grad  on 1»̂J  and 2¼̂J ) that multiply 
1[�  and 2[�  while solving (20) for 3[� . 

 

 
  Figure 2:Correction of constraint violation at the velocity level 
 
 

5.2. Structure of the partitioned subvectors  
So far, constraint gradient projective method has been 

discussed for stabilization of constraint violation during 
dynamic simulation of holonomic system only [5]. Would it be 
possible to apply proposed algorithm in the framework of 
simulation procedures of non-holonomic systems? If, in the 
case of holonomic system simulation, partitioned subvector at 
the position level is selected, can the same subvector be used 
automatically for stabilization at the velocity level as well? Is it 
valid in any case?   

To get answers on these questions and gain further insight 
into described procedure, it is illustrative to observe 
characteristics of the proposed algorithm at the tangent bundle 

( ){ }MMM ½[[[[ 77 ∈∈= �� ,:, of an unconstrained 
system.  

As explained, M7  is 2n-dimensional Riemannian 
manifold with a metric ( ) ( )( )[[ 000 ,diag=M¾ , where a 
configuration of the system as well as its velocities can be 
studied [24]. If constraints are present, they are represented in 

M7  by the configuration and velocity submanifolds, by 
means of which the possible states of system are determined. 

Observed at M7 , the constraint gradient projective method 
can be studied for each submanifolds separately. By using the 
projective criterion for both manifolds, characteristics of the 
partitioning procedure that for a given set of coordinates 

MM ¿[[ 7∈∈ �,  provides the optimal dependent/independent 
subvectors, can be learned as follows.  

 
 

5.2.1 Holonomic constraints 

The configuration submanifold 
ÀÁ −S  is determined by the 

equation (3) i.e.  
                                                  

( ){ }�[[ =Φ∈=− WÂÃ
,,MS .          (21) 

The submanifold 
ÄÅ −V , by means of which the system 

velocities [�  are constrained, is defined by (4), thus 
 

( ){ }[[[ ÆÆ =Φ∈=− �� W7ÇÈ
,, *MV .          (22) 

If the constraint gradient projective method is applied for 
stabilization purposes at the both configuration and velocity 
level, the projective criterion itself is based on determination of 

the gradients to the constraint submanifolds 
ÀÁ −S and 

ÉÊ −V  
(as explained, this is because the extraction of the dependent 

coordinates of d[  and d[�  depend on the directions of 

gradients to the hypersurfaces of submanifolds 
ËÌ −S and 

ÉÊ −V  respectively). 

Since constraint submanifold 
ËÌ −S  is determined by (3), 

the [  correction gradient by means of which d[  is to be 
extracted is given by 

                                                

( )[ ] ),(,grad WW [�[ Í
Î== .            (23) 

Similarly, [�  correction gradient, decisive for an extraction 

of d[�  reads as 
 

 ( )[ ] ),(,grad ** WW [[[ ÏÏ ==� .                  (24) 
Now, if the expressions (23) and (24) are compared, it is 

obvious that the both hypersurfaces 
ÐÑ −S and 

ÒÓ −V  have the 

same gradients for every point in M7  (in fact, the both 

gradients depend on the current position M∈[ at the 
configuration manifold and t only, i.e. they are independent on 
system velocities [� ). Of course, this stems from the fact that, 
in the case of holonomic systems, the velocity submanifold ÔÕ −V  is determined by algebraic equations (4) (linear in [�  !) 
which are, in turn, obtained by derivation of the configuration  
constraints (3). 

Since the gradients to the both hypersurfaces 
Ö× −S and 

ÔÕ −V are identical, it is clear that the same optimal 
dependent/independent subvectors at the both configuration and 

velocity level i.e. [ ]T
d21 ,...,, [[[  and [ ]T

d21 ,...,, [[[ ���  will 

be extracted during stabilization via constraint gradient 
projective method. This means that, once the partitioning 
procedure is performed for the configuration coordinates and 

subvector d[  is extracted, it is not needed to be repeated at the 
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velocity level (the subvector d[� of the same structure is to be 
chosen for the stabilization of velocities).  

 
 

5.2.2 Non-holonomic constraints 

A constraint gradient projective method can also be applied 
for stabilization of constraint violation of non-holonomic 
systems. If additional nh non-holonomic constraints (9), which 
are imposed on the system (beside h holonomic constraints (3) 

that define configuration manifold 
ØÙ −S , KU = ), are given in 

linear (Pfaffian form) (10), the submanifold
Ú|ÛÜÚ −−V  of the 

velocity constraints are defined by 
 

( )
( ) 







==







E
W)) [[[%

[Ý
�� *

*

*

,
,

Þ|ßW
W

,
àà�áá

à�á ×+∈Φ R*â .  (25) 

 
By considering (25), the[�  correction gradient reads as 
                                                   

( )
( )






==















= W
WWã|äã|ä

,

,
),(grad

*

*
**

[%
[[[ å))E

W) � . (26) 

 
Since non-holonomic constraints do not affect 

configuration manifold 
æç −S , the ‘position’  coordinates 

correction gradient is given by (23). 
By comparing correction gradients (26) and (23) which do 

not match any more, it can be concluded that in the case of non-
holonomic systems the optimal coordinates partitioning will not 
‘return’  dependent/independent subvectors of the same 
structure for configuration and velocity stabilization. Beside 

non-equality of dimension of the subvectors 
è

R∈d[  and é|êë −∈Rd[� , their structure will also differ in general case. 
Generally, in the case of non-holonomic systems, a separate 
partitioning procedure is necessary for stabilization at 
configuration and velocity level.  

This is specially true if the imposed non-holonomic 
constraints (9) can not be put in Pfaffian form. If non-
holonomic constraints are non-linear in velocities (this kind of 
constraints can appear as a result of certain controlling actions), 
it will be necessary to determine a completely new correction 
gradient 

                                                                                                                                                                                              
( )[ ] ì�[[ í� << ==W,,grad ,                  (27) 

 
to accomplish optimal correction of the velocity constraint 

violation. 
 

6. EXAMPLE 
As an example, a snakeboard has been numerically 

simulated [25].  The snakeboard is modelled as a multibody 
system with 4 bodies connected to each other by means of pin-
joints. There is one coupler, two small boards with wheels and 
one rotor on the coupler to model the human body. The 2 pairs 
of wheels cannot slide and therefore impose two non-

holonomic constraints on the system. On the configuration 
level, the snakeboard has 6 degrees of freedom (fig. 3).  

 

 
Figure 3: Snakeboard 

 
In the simulation, following parameters were used: mass 
6kgP =  and moment of inertia 0.016kg.m²- =  of the 

coupler, moment of inertia 0.0013kg.m²î- =  of the wheel 

boards, moment of inertia 0.072kg.m²ï- =  of the rotor and 

length 0.2mO =  from the centre of mass to the wheels. The 

initial values are 0ð[ \ θ φ= = = = , 0.2ψ = rad and 

3
ñ πφ = rad. The simulation time is 2s. A force ( )ò óI I=I  

of 20N  is acting on the centre of mass of the snakeboard, it is 
directed parallel to the coupler, towards the front wheels. 
Springs with a constant of 0.1Nm/rad  are added at the wheel 
boards to try to keep the initial relative angles between wheels 
and coupler. Another spring with a constant of 1Nm/rad has 
also been added between the coupler and the rotor. The 
equations of motion for the system are:  

 

  

1 2

1 2

1 2

sin( ) sin( )

cos( ) sin( )

( 2 )

cos cos 0

0

0

0

ô õ ö
ô õ ÷

ø ù ø ù ô ù õ
ô õ

ø ø
ù ô ù
ù õ ù

P[ I
P\ I
- - - - - -

O O
- -
- -
- -

λ φ θ λ φ θ
λ φ θ λ φ θ

θ ψ φ φ
λ φ λ φ

ψ θ
φ θ
φ θ

− + − + =

+ + + + =

+ + + + +

− + =

+ =

+ =

+ =

��

��

�� �� ����

����

�� ��

�� ��

(28) 

 
Together with the nonholonomic constraint equations: 

  sin( ) cos( ) cos( ) 0

sin( ) cos( ) cos( ) 0

ú ú ú
û û û

[ \ O
[ \ O

φ θ φ θ φ θ
φ θ φ θ φ θ

− + + + − =

− + + + + =

�� �

�� �

  (29) 

 
The simulation has been run under 4 different numerical 
integrations. First, an explicit Runge-Kutta (4,5) formula with 
variable stepsize was used, to obtain a reference simulation S1 
(fig. 4). The absolute and relative tolerances were set to 1e-13. 
To test the stabilisation procedures, the equations of motion 
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have subsequently be numerically integrated without 
stabilisation (S2), with stabilisation using the optimal choice of 
independent coordinates (S3) and with stabilisation using an 
other possible choice of independent coordinates (S4). For 
these simulations, a fourth order Runge-Kutta integration 
scheme was used with a fixed stepsize of 0.01 seconds.  

 

 
Figure 4: Evolution of the coordinates in time 

 

 The velocities ψ� , üφ�  and ýφ� do not appear in the two 

constraint equations and are therefore independent. The fourth 
independent coordinate for simulation S3 was chosen amongst 

[� , \�  and θ�  using the projective criterion. The squared 

relative projections G  of the direction vectors on the tangent 
subspace are shown on figure 5. For simulation S3, the biggest 
projection was used to choose the independent velocity, it was 
alternatively [�  and \� . 

 
 

Figure 5: Evolution of the projectionsG  
  

In figure 6, the constraint violations errors are shown for 
the simulations without (S2) and with (S3) stabilisation of the 

constraint violation errors (29). For S3, the errors are 
theoretically zero (magnitude 1e-16 in practice, due to round 
off errors) the simulation. For the simulation without 
stabilisation, we see growing violation errors. 

 

 
 

Figure 6: Constraint violation errors 
 

During simulation S4, the second biggest projection (fig. 5) 
was used to choose the fourth independent velocity. Although 
this choice is valid and eliminates the constraint violation 
errors, it is not optimal and introduces larger errors along the 
trajectory, as shown in figure 7.  

 
Figure 7: Errors along trajectories 

 
 

7. CONCLUSION 
The issues of geometric and stabilization characteristics of 

the constraint gradient projective method, which has been used 
as the stabilization procedure within time-integration method 
proposed in [5], have been addressed in the paper. By adopting 
differential-geometric point of view, the ‘mechanism’  of 
emerging of numerical errors along the ‘position’  configuration 
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manifold during projection step have been discussed, along 
with the issue of stabilization of the constraints at the velocity 
level. In the case of simulation of holonomic systems, the 
optimal coordinate partitioning returns coordinate sub-vectors 
of the same structure at the both position and velocity level. 
Once procedure for position coordinates is completed, it must 
not be repeated for velocities. 

It has been shown that constraint gradient projective 
method can be applied for stabilization of constraint violation 
of non-holonomic systems as well. Here, correction gradients to 
position and velocity sub-manifold do not match any more, 
which means that the optimal coordinates partitioning will not 
‘return’  dependent/independent subvectors of the same 
structure for configuration and velocity stabilization. Generally, 
in the case of non-holonomic systems, the constraint gradient 
projective method should be performed separately for each 
stabilization level. This is specially true if the imposed non-
holonomic constraints can not be put in Pfaffian form. 
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