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ABSTRACT

In this paper, a recursive () method to obtain a set of
Hamiltonian equations for open-loop and constrained nboiiy
system is briefly discussed. The method is then used to mperfor
a numerical comparison of acceleration based and canonical
momenta based equations of motion. A relatively simple exam
ple consisting of a biped during double support phase is used
for that purpose. While no significant difference in efficigis
found when using a fixed step numerical integration methua, t
Hamiltonian equations perform considerably better wheimgis
an adaptive method. This is at least the case when the error
control is applied straightforwardly. Both methods can bede
equally efficient by removing the error control on the vetiesi
for the acceleration based equations.

INTRODUCTION

Multibody systems (MBS) dynamics is the study of the
motion of systems of interconnected bodies and the forcds an
torques exerted on them. The simulation of the motion of me-
chanical systems has a wide variety of applications suchras v
tual prototyping, virtual reality, computer animation aad-
vanced robot control. One can state that two main challeages
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designing more efficient algorithms for obtaining the etprabf
motion [1-8] or by achieving better numerical integration11]
for advancing the state in time. On the other hand, manytsffor
are done to incorporate events in the simulations, whikamatg
computational efficiency. Contact detection and impacsgr-u
interaction and time-varying topologies need all to be akéo
account when realistic simulations are needed, this iscéhe
true for physics based computer games [12].

In previous publications [13, 14], an attempt was made tc
address the first challenge. A new, canonical momenta base
algorithm was presented to solve the forward dynamics probl
in a very efficient way, by reducing the number of operations
required to obtain the equations of motion. It is also pdssib
to handle constrained multibody systems with the algorjtam
shown in [15]. The purpose of this paper is to demonstrateesom
numerical examples and to point out some interesting featof
the Hamiltonian equations related to the numerical intégna
of these specific examples. In sections and , a short baagkdrou
of the Lagrangian and Hamiltonian equations is given. In the
following sections, the recursive algorithm is presented ig it
briefly described how the joint accelerations can be obthiite
is handy to be able to calculate the derivatives of the caadbni

on the focus of research. On one hand, a lot of research has bee momenta and the accelerations with the same algorithm, as

and is still being done to reduce the computation time of dyna
ical simulations, while the complexity of the simulatedtgyss
keeps growing. The efficiency of simulations can be incréase

enables a comparison between the numerical integratidostof
sets of equations. Finally, an example consisting of a caimgtd
multibody system is discussed.
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LAGRANGE’'S EQUATIONS

The equations of motion for a multibody system described
by n generalized coordinateg can be found using the well-
known Lagrangian approach [16-18]:

d oL, oL

a(ﬁ)_ﬁzQ 1)

L =T —V is the Lagrangian function, whefe andV are re-
spectively the total kinetic and the total potential enesgf the
system.Q are the external generalized (non-conservative) forces.
Equations (1) form a set of ordinary differential equati@®E)

of second order. If the coordinatgsare related to each other by
means of (holonomic) constraint equations

®(q,t) =0 )

a term embedding the generalized reaction forces is addéé to
equations:
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®q is the Jacobian matrix of the constraints anare the La-
grange multipliers. Equations (3) form a set of mixed déferal
algebraic equations (DAE). The constraint equations atenof
differentiated twice to time, to convert the DAE into an ODE:

Pl + Pgq + Py =0 @

@ is the partial derivative of the constraints with respedirte.
The combination of (3) and (4) results in

(%))

= ©)
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M is the mass matrix. The use of the constraint equations at

the acceleration level (4) does not have any theoretic&lroess-
sion, it does however induce problems during numericabiate
tion. As small numerical errors are introduced on the accele
ation level, these will be integrated twice and will resultun-
controlled errors on the velocity and position levels. Efiere

the need for stabilization methods for the constraint viofaer-
rors. Well known procedures are the penalty methods [10, 19
and the coordinate partitioning method [20]. Differentidde-
braic approaches based on projections on the constrairitaitan
are promising alternatives [21, 22].

HAMILTON'’S EQUATIONS

The Hamiltonian equations can be found by applying a Leg-
endre transformation on the Lagrangian [16]. This trametor
tion changes the description of the system in terms of génera
ized coordinates| and velocitiesy to a description in terms of
the same coordinategand their conjugated canonical momenta
p. These canonical momenta are defined as:

oL
They are an extension of the concept of linear and angular mc
menta to generalized coordinates. Applying the Legendirestr
formation yields

. oH
q= % (7a)
. oH

p:—%JrQ—ng)\ (7b)
®(q,t) =0 (7¢)

This is a set of DAE’s with & first order differential equations
andmkinematic constraint equations.= p' g — L is the Hamil-
tonian function. DAE’s are characterized by a so-calletedn-

tial index. The acceleration based formulations have aexnd
of 3, the Hamiltonian formulation has index 2 [18]. As shown
by Brenan et al. [23], index 2 DAE’s have a better behavior
during numerical integration. Numerical evidence is pded

in [10, 24]. Hence, the use of canonical momenta may be nume
ically advantageous compared to the use of acceleratioaasT
forming DAE (7) into a set of ODE'’s, in analogy with the La-
grangian formulation, leads to the same conclusion. Thisbea
seen by considering the equations of motion as the solufian o
variational problem with constraints [9] [10]. This impdites the
definition of the so-called augmented Lagrangian whichiideb
the constraints at the velocity level:

L'=L+d o 8)

It results in following set of equations:

Copyright (© 2005 by ASME



9)

(%)) (%)

together with

p=Lq+Q+dg0 (10)

As the constraints were used at the velocity level, the nigaler
errors are integrated only once, resulting in smaller cairst
violations.

O(n) FORMULATIONS

There exists a myriad of methods to derive sets of equa-

tions of motion. Equations (5) and (9) enunci@én®) meth-
ods by constructing and inverting the mass matrix. Thesé-met
ods can be quite efficient for few DOF, certainly in combioati
with symbolical optimization. They tend to become computa-
tionally demanding for higher numbers of bodies howeved an
it may be a more judicious choice to revert to recur$d(@) al-

gorithms in that case. For open-loop systems, a wide chdice o

algorithms is available. They mainly differ in details as tise of
quasi-velocities or generalized speeds [3], the chosemarte
points (center of gravity, joint axis), description in réla or in-
ertial axes, the use of barycentric coordinates... Mangratgns
use the concept of articulated mass matrix introduced in 1]
is also possible to derive a set ldamiltonian equationsvith a
O(n) method [13]. Constrained multibody systems are more dif-
ficult to solve recursively. Baraff solved the problem usthg
descriptor form and exploiting the sparse structure of thagrim
(PgM ‘1<1>g) [6]. In[25], a method using the reduction of the de-
pendent spatial velocities can be found, this method isnebete
and explained with the concept of phantom bodies in [7]. 5] [1
the same ideas are used for the Hamiltonian formalism.

RECURSIVE HAMILTONIAN ALGORITHM

The recursive Hamiltonian algorithm for open-loop as well
as for constrained multibody systems will now be descrilsea.
those who will not settle for less than a complete derivaiié]
and [15] may give satisfaction.

Rigid Body

The algorithm introduces a 6-dimensional momentum vec-
tor P, which is nothing else than the aggregation of the lingar
and angulap, momenta:

Figure 1. KINEMATICS NOTATION ON A RIGID BODY.

Figure 2. DYNAMICS NOTATION ON A RIGID BODY.

(11)

P~ (3= (6 "5%) 0) e

m is the mass of the body, is a unity dyadic,J is the inertia
tensor andOG is the position vector from the origi@® of the
local reference frame to the center of méssf the body (fig.1).

v is the linear velocity ofO and w the angular velocity of the
body referred to the inertial axes. Both the linear and aargul
velocities are brought together in the spatial velocitytoe@.

M is the (symmetrical) mass matrix.

X is a skew-symmetric matrix constructed from the vesgtand

is an alternative notation for the cross product.
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Writing the Newton-Euler equations in terms of the mass matri
and taking the time derivatives with respect to lineal reference
frame results in following concise formula [26]:

P+QxP=T (13)

inwhichT = (fT  t")T is the spatial force containing both
the resultants of the forcésand the torques(fig. 2). The cross
product for spatial vectors is defined as

o= ()2 33

Using definition (6), one can see that the canonical momensta a
the projection of the momentum vector on the subsiaoéthe
virtual motion:

(14)

oL aT aQT - T
p_%_ﬁq_ﬁaMQ_EMQ_EP

(15)

Matrix E is called the joint matrix and consists of the partial
derivatives of the spatial velocity with respect to the joie-
locities.

Open-Loop Multibody System

For open-loop multibody systems, the so-called articdlate
momentum vectoP* and accumulated forceE* are needed.
They follow from the concept of articulated bodies [1].

(16)
(17)

F
P; =Pc+ KTK+1P;+1
T:Z =T+ KTK'j—sz-#l

k7,7, denotes the spatial force transport operator (also called

spatial force shift dyadic) from outboard body+ 1 to actual

Pk = ExPk (18)
The principle of virtual power states that the reaction ésrand

torques do not produce a net power. This can be mathematical
formulated as

> QT (P +QixPi~T)=0

(19)

The summation is taken over all rigid bodies of the systér,
denotes airtual spatial velocity. Further developments of these
equations and introduction of (16) and (17) eventually $etad

Pk + Qu x P = T (20)

which is of the same form (13) as for a single rigid body. The
time derivative of the canonical momenta can explicitly bé c
culated by projecting these equations on the joint subspace

Pk = Ex(T* — Q x Pg) + Ex Py (21)

Constrained Multibody Systems

When additional constraints are imposed on the system, fc
example in the case of loop closure, the principle of virpaber
can be used as well. However, the virtual coordinate veésit
complicate matters: while they were independent in the oése
open-loop systems, they are related to each other in the col
strained case. A(n) solution consists of reducing the depen-
dent spatial velocities to the independent ones.
Consider figure 3 for example. It represent a chain Wtbkle-
ments interconnected by means of pin-joints. Solving tlodpr
lem implies a choice of dependent coordinates. Let it be the ¢
ordinates conjugated to the two last eleméits1 andN. It can
be shown that the velocities of these bodies can be written as

QN = CNN‘Z}\Y_]_QNfl
On- 1 = CnoV 7Y 0N 2

(22)
(23)

with the constrained matricés being independent on the coor-

bodyK. It can again be shown that the canonical momenta are dinate velocities7V is the velocity transport operator. Inspired

obtained by projecting the articulated momentum vectorhan t
joint subspace:

by these equations, one can define a generalized articutaded
mentum vector as
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Figure 3. CHAIN WITH BOTH ENDS FIXED BY MEANS OF PIN-
JOINTS.

PR =P+ CR* T ,PE, (24)

This vector will further be called the constrained (artated)
momentum vector. Note that one can use this definition fonepe
loop systems, assigning = 1. Like for single rigid bodies and
open-loop systems, the canonical momenta can be found by pro
jection of P¢ on the joint subspace:

Pk = ExPk (25)
Quite tedious manipulations of (19) yield
PS +Q x P =T¢ (26)

Unfortunately, the constrained force vecify does not have a
simple form. This is obviously the price to pay for the added
constraints.

TR = Tk + T, 1Cla Tk (27)

+ KTKF+1[C-|£+1 +(Q 41 X |)C1|;+1 - C-|£+1(QK+1 x 1)]Pk+1

On the other hand? has a sparse structure and above equation

Velocities And Accelerations

A set of Hamiltonian equations (7) is not complete with-
out the time derivative of the coordinat§s These coordinate
velocities can be computed by means of equation (11), wiseh e
tablishes the link between the momentum vectors and theaspat
velocities. Development of this equation together with deé
inition for the articulated momentum vector results in a moeit
to obtain the velocities using one backward and one forwexd r
cursion. Moreover, a similar method can be conceived for the
calculation of the accelerations. While the acceleratiorsat
necessary for the simulation itself, they indirectly paevithe
joint reaction forces at a moderate additional cost. A user c
also easily switch from a canonical based formulation to@an a
celeration based formulation. This provides a conveniuitfor
comparison of the numerical integration of both formalisms

NUMERICAL EXAMPLE: A BIPED

A numerical comparison between acceleration based an
canonical momenta based equations of motion will now be per
formed. The purpose is to study the behavior of both setsud-eq
tions during numerical integration. First, fixed step nuicadin-
tegrators are used to compare the introduced errors fot tionga
steps. Subsequently, adaptive methods are used and thenum
of function calls needed to achieve a given tolerance isrdexb
Only one example is considered, the results should not e int
preted beyond this context.

Model Description

The constrained multibody system that will be discussed i
based on the model of a biped robot during the double suppo
phase (fig.4), so both feet are fixed to the ground during the si
ulation. The model is kept simple and only gravitationacts
are considered, while no friction is present and no conteted
tion is performed. The biped actually moves through the gdou
in the presented simulation. This does not matter, as thyepom
pose of this example is to compare the behavior of acceberati
based and canonical momenta-based equations during roaneri
integration.

The system has five links and three degrees of freedon
Each link has a mass okf and a length of @5m, resulting
in a moment of inertia of @20&g.m? around the joint axis. Us-
ing the recursive Hamiltonian algorithm, a singularity ocif
the two dependent links 4 and 5 are along the same line. It i
not the purpose of this paper to show how singularities can b
coped with, so singularities are simply avoided. The tatals
lation time is limited to 085s for that purpose. The initial veloc-

does not involve as many operations as may appear. Choosingities are all zero, while the initial coordinates are respety

arbitrary dependent bodies is quite more complicated,tthes
no repercussions on the global shape of the equations.

o1 = 1702 = —0.7 andgs = 0.3. The two ankles touch the
ground at the same height28m apart.
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Figure 4. MODEL OF THE BIPED.
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Figure 5. GENERALIZED COORDINATES.

Numerical Integration With Fixed Step

For a first approach to the simulation, a fixed step method
is used. The Runge-Kutta-Fehlbettd4rder method is suitable,
as it provides an estimation of the local truncation errdrich
will give interesting information. The simulation is pernfoed
several times, with different time steps ranging frorfi@1s to
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Figure 6. COORDINATE VELOCITIES.
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Figure 7.  CANONICAL MOMENTA.

and 22e — 14 (minimum allowed by Matlab’s ODE45) were
taken. Although the numbers are consistently smaller fer th

0.01s and with both a set of equations based on accelerations Hamiltonian equations, the measure is to coarse and the di

(1) and a set of Hamiltonian equations (7). The evolutiorthef
coordinates, the coordinate velocities and the canonioatemta

are given in figures 5, 6 and 7.

ferences are too small to make any conclusion. Similar t&sul
where obtained using a second order Runge-Kutta method ar
the implicit trapezoidal method(ODE15S). Additionallyg.B

In table 1, one can see a synthesis of the results. The esti-demonstrates the positive effect of the Hamiltonian eguatdn

mated truncation error, averaged over the total simuldiioe
and over all generalized coordinates, is calculated as agell
the mean end error on the coordinates t(at 0.85s).
end error is obtained by comparing the simulation resulth wi
a reference trajectory calculated with théaptiveRunge-Kutta
Fehlberg method. Absolute and relative tolerances.@é 4 18

This

the evolution of the constraint violation errors.

It is also interesting to note that the local truncation eam
the velocities are consistently larger than on the cootdmd-or
a fixed time step of @01s, the averaged error is.Ze— 09 for
the velocities, while it is only e — 11 for the generalized co-
ordinates. The canonical momenta have an even smallerggvera
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Figure 8. CONSTRAINT VIOLATION ERRORS FOR 0t=0.001s.

Table 1. FIXED STEP INTEGRATION WITH RKF45 METHOD.
Time step Average end error Mean local truncation erro

Accelerations| Hamilton || Accelerations| Hamilton

0.01s 2.8e-03 1.2e-03 1.6e-06 9.7e-07
0.005s 1.9e-04 5.4e-05 4.3e-08 3.9e-08
0.001s 4.5e-08 1.2e-08 1l.4e-11 1.3e-11
0.0005s 1.1e-09 3.8e-10 4.4e-13 4.2e-13
0.0001s 3.8e-11 2.9e-11 1.4e-16 1.3e-16

truncation error of be— 12.

Numerical Integration With Adaptive Steps

The same simulation is now performed with two adaptive
methods (ODE45 and ODE15S). Table 2 gives a list of simula-
tions using different tolerance levels, both the absoluig the
relative tolerances are set to the same value. There is dur@ico

Table 2. FIXED STEP INTEGRATION WITH RK4 METHOD
Tolerance| Method | Enderror | F.E. Lagrange| F.E.Hamilton
le-04 ODE45 le-02 313 206
le-05 ODE45 4e-04 457 320
1le-06 ODEA45 le-05 661 434
1e-09 ODE45 4e-09 2545 1646
le-12 ODE45 2e-11 10135 6560
le-13 ODE45 2e-11 16063 10400
1le-03 ODE15S 336 235
1le-06 ODE15S 682 460
1le-09 ODE15S 1542 998
le-12 ODE15S 7916 4815

Table 3. ADAPTIVE STEP SIZE WITH RKF45 METHOD (TOL.:10_6)
Mean trunc. err. Average end err. #of FE.
Tol=10"% Acc. H Acc. H Acc. H
Full err. control 4.2e-09 | 4.4e-08 || 1.4e-05| 2.0e-05 || 1578 | 1177
Partial err. control | 4.7e-08 | 4.7e-08 || 4.8e-05| 2.1e-05 || 1164 | 1159

On the other hand, the canonical momenta do not exhibit suc
big errors and their errors are treated at the same levekasoth
ordinates. It is interesting to investigate what happensnmthe
tolerance on the velocities and canonical momenta is rdlake
even removed (see table 3). With full error control, it is mea
that all the state coordinates are checked for errors, whilethe
generalized coordinates are checked if partial contropgied.
One can see that the errors on the velocities fully accourthé®
extra computing cost using an adaptive method, while theadive
accuracy does not deteriorate significantly. Figures 9 &nehi-
phasize this: per time step ofdls, it has been calculated how
many iterations were needed by the solver. The figures shew tr
results for respectively full and partial error controlnéging the
velocities while performing the error control is of cours# rec-
ommended, but this example shows that an equal toleranek lev

for the average end error and two columns giving the number of for each state coordinate may not be the most judicious ehoic

function evaluations (F.E.) needed for the simulation. fitme-
tion which is referred to is that which returns the accelerst

(§) or the derivatives of the canonical momenta and the gener- CONCLUSIONS

alized velocities§,q). For example: the Runge-Kutta-Fehlberg
method requires 6 F.E. for each time step (sometimes onlh8 if
tolerance is not met, therefore the odd numbers in the table
Hamiltonian equations clearly need to compute the equatidn
motion less often (30% to 40%).

Let’'s now take a closer look at the case ef106 tolerance.
As told in previous section, the truncation errors for thiegities
are much higher than the errors for the coordinates. The rume
ical solver will therefore adapt its step size to the formeoses,
resulting in even smaller truncation errors for the cocatés.

In this paper, a recursive algorithm for the forward dynasmic
of multibody systems was introduced. The algorithm is based
canonical momenta, resulting in a set of Hamiltonian equati
This formed the inspiration for a comparison of the behawfor
acceleration based equations and Hamiltonian equatiorisgdu
numerical integration. A biped robot was chosen as example
It appeared that, while the accuracy is similar when usingdfix
step methods, the adaptive methods have a harder timengckli
the acceleration based equations: more iterations aressege
while no significantly better accuracy is achieved. Howgexer
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Figure 10. NUMBER OF ITERATIONS, PARTIAL ERROR CONTROL.

laxing the absolute tolerance on the coordinate veloditiey)s

the number of iterations to the same level as in the case oflHam
tonian equations. One should thus consider using diffent

erance levels for different state coordinates prior to &ation.

It would be interesting to apply the same numerical analgsis
other, more complex models and investigate whether thelwonc
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