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ABSTRACT

In previous work, a method for establishing the equations of
motion of open-loop multibody mechanisms was introduckd. T
proposed forward dynamics formulation resulted in a Hamnilt
nian set of2n first order ODE’s in the generalized coordinates
g and the canonical momenta p. These Hamiltonian equations
were derived from a recursive Newton-Euler formulationvéis
shown how an @n) formulation could be obtained in the case
of a serial structure with general joints. The amount of reeg
arithmetical operations was considerably less than corapker
acceleration based formulations. In this paper, a furthepsis
taken: the method is extended to constrained multibodg st
Using the principle of virtual power, it is possible to obia re-
cursive Hamiltonian formulation for closed-loop mechamésas
well, enabling the combination of the low amount of arithmet
cal operations and a better evolution of the constraintsation
errors, when compared with acceleration based methods.

INTRODUCTION

Dirk Lefeber
Vrije Universiteit Brussel
Faculty of Applied Sciences
Department of Mechanical Engineering
Pleinlaan 2, 1050 Brussel, Belgium
Email: dlefeber@vub.ac.be

ogy, user interaction... These events require a high fliyiloif

the simulator and can use a great amount of computer progessi
time, certainly in the case of contact detection for a higmnu
ber of bodies or bodies with a complex structure. This papaer i
contribution to the first challenge.

There exist many ways to treat the equations of motion
but the recursive formulations have proven to be very efficie
for large numbers of bodies [1]. Most methods are accelera
tion based: whether the Newton-Euler equations, the Lagsan
equations or the principle of virtual work or virtual powerea
used, second order differential equations are obtainedttaad
algorithms come down to calculating and integrating aceele
tions [1-8].

An important aspect is the set of coordinates that describe
the state of the system, because it does have strong repercl
sions on the numerical integration. Expressing the equsitid
motion in a minimal set of coordinates results in less défer
tial equations, which are however more coupled and usuzlly e
hibit stronger non-linearities [9], compared to the nomimial
formulations. The advantage is that no constraint equsitéoa

One could state that multibody dynamics research is focused required and a set of ordinary differential equations (OB}t

on two major challenges nowadays. The first challenge isthe i
crease of simulation speed by calculating the equationotibm
in a more efficient way or by creating better numerical indegr
tors. The second challenge is about the efficient incorfmrat
of events in the simulation: contacts, impacts, changipglto

be solved. Non-minimal formulations on the other hand, ltésu
mixed differential algebraic equations(DAE), but are imgel
much easier to establish.

Instead of manipulating the number of coordinates, one ca
also change the nature of the coordinates. Acceleratioadbas
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formulations require starting values for the generalizedrdi-
nates and the velocities.
these equations as first order differential equations ingre
eralized coordinates and the velocities. An interestitigra-
tive are Hamilton’s equations, which are expressed in tess
the generalized coordinates and tr@njugated canonical mo-

menta Promising, because these equations behave better dur-

ing numerical integration, resulting in more accuracy aadit
ity [10,11]. Despite that fact, the Hamiltonian formulatis not
often encountered in multibody dynamics literature. Thaesom
for the lack of interest is probably that the constructiofamil-
ton’s equations is computationally intensive and cannotmete
with the recursive acceleration based algorithms, eveh thig
advantageous behavior during the numerical integratiofewA
researchers [12, 13] devoted time to the use of the Haméltoni
equations in multibody systems dynamics and obtained v@sy p
itive results.

In previous work [14], an additional step to promote the use
of canonical momenta was taken, by introducing a resursive
method to establish Hamilton's equations for open-loogidi
multibody systems. The presented algorithm did not only pro
vide an HamiltoniarO(n) equivalent for the acceleration based

methods, but even exceeded their performance at the level of

number of required arithmetical operations.

The problem of obtaining the equations of motion becomes
more involved when additional constraints are applied ersils-
tem, as is the case with closed-loop systems [15, 16]. Thagtr
interdependency of the coordinates and their velocitielkesi
difficult to tailor aO(n) recursive algorithm, certainly to obtain
Hamiltonian equations. It is however possible, and that bél
shown in this article.

The paper is further divided in two parts. In the first part,
the basic formalism of the method is introduced and the algo-
rithm for open-loop systems is briefly reviewed. The seccard p
tackles the problem of additional constraints.

NEWTON-EULER IN RELATIVE AXES
The classical formulation of the Newton-Euler equations fo
a single rigid body is given by

dOVG
dx
Je +wxJecW=tg+trg (1b)

dt

The first equation is typically written in an inertial reface
frame (notation%), while the second is formulated in a frame

K fixed to the body %f). The force and the torque that act on the
object are represented bwyndt, thereactionforces and torques

2

In that sense, one can also think of

Figure 1. KINEMATICS NOTATION ON A RIGID BODY.

Figure 2. DYNAMICS NOTATION ON A RIGID BODY.

by f, andt;. The matrixJ is the inertia tensom is the mass of
the body,w is the angular velocity referred to the inertial axes
andvg the linear velocity of the center of mass (see figure 1).
The indexG denotes that the momenta and the tensor of inerti
are taken with respect to the center of mass.

The 6-dimensional momentunector will be needed, it is de-
fined as follows:

=3~ (r56"5%) 2), e

Inspection ofP reveals that it is nothing more than a concate-
nation of the linearf) and angulars) momenta of the rigid
body. | is a unity dyadicy the linear velocity of the origi© of

()
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the local reference frame. This origin must lie on the rotedi
joint axes, if presentJ is the tensor of inertia referred to point
O. M is called the mass matriXX is a skew-symmetric matrix v A (GO
constructed from the vectorand is an alternative notation for Qx = <w) X = (v Go)
the cross product.

(7)

The equations of motion for a single rigid body then become

0 —Xx3 X2 a1
xxa=%Xa=| x3 0 —x a 3)

o 0) \a P+OxP=T+T, 8)

i — (Tt T, = (fT{T\"
Q is the spatial velocity vector. It can be written as a funciod with T = (f t ) Tr= (fr b ) '

the coordinate velocities (scleronomic constraints):

_ HAMILTONIAN EQUATIONS
Q=Eq (4) Introducing the Hamiltonian equations requires a brief de-
scription of the Lagrange equations. These are given by [17]
We call E the joint matrix. The column vectors of the joint ma-
trix form a basis for the space of virtual motions and are kenc

orthogonal to the space of the generalized reaction foftlesy E(ail—) S P 0 (9a)
are the partial derivatives of the spatial velocity vectathie gen- dt'oq” 0dq d
eralized coordinates. The coordinate velocities vegtbas di- ®(q,t) =0 (9b)

mensionn, which is the number of degrees of freedom of the
body. The joint matrix therefore has dimensions 6. In case

of rheonomic constraints, an additional te@nis required to ac-
count for the prescribed motion.

The Newton-Euler equations (1) can be reformulated iniveat
axes, and written with respect to the orighn Note that the rela-
tion between the time derivatives in two different frankeand

L is given by

This is a set of differential algebraic equations (DAE). Tiféer-
ential equations are of order & are the constraints equations.
The Lagrange equations are described by thgg€f), which
are the coordinates and their velocities. Using the seddleg-
endre transformation, it is possible to transform this $eoor-
dinates into the sangpand their conjugatedanonical momenta
p, which are defined as:

d'x  d*x
_d% aL
at — dr X ®) P= 3 (10)

wy being the relative angular velocity of frarkewith respect to
frameL.

Furthermore, the momentum vector (2) can be introduceden th
equations. After some mathematical manipulations, androbs
ing thatp, = mvg, equations (1) can be reformulated as:

They are an extension of the concept of linear and angular mc
menta to generalized coordinates. Applying the Legendrestr
formation results in

. OH
4= (11a)
o)+ (08) () = () (2)
R I S e = + 6
<pa> (V @/ \Pa t tr © p= fg—ngQ—ng)\ (11b)
By convention, all momenta are taken with respect to therorig ®(q,t) =0 (11c)
O of the local referen%e frame.stands for the time derivative in
local axes, e.gox = dd—‘f‘(. This implies thatvix = 0. Referring to the alternative formulation of the Newton-&ul
We will go further in the conciseness of the equations, by equations, it can easily be shown that the kinetic end@rgyf a
defining a 6-dimensional cross product as follows: single rigid body can be expressed as:
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1 1
T=2Q™MQ=2Q'P

12
> > (12)
Calculating the canonical momenta with (10) yields
oL oT  0QT
—MQ=E"MQ=ETP 1
“oq o og 49

The canonical momenfaconjugated to the generalized coordi-
natesy are thus the projections of the momentum ve&on the
joint axes.

EQUATIONS OF MOTION FOR OPEN-LOOP MULTI-
BODY SYSTEMS

In this section, a short overview of the algorithm for open-
loop multibody systems will be given. For a detailed deromat
and description, take a look at [14, 18, 19].

Force And Velocity Transformations

By convention, the reactions (torques) from bodyare
taken with respect to poil@y on the joint axis. To transmit these
reactions to origirOx of bodyK, the transformation matriz,

is used:
K,TNF _ /_I\_/ 0
OkOp |

Note that this matrix is constant in the local reference fam
Observe also that the velocities transform in a similar way:

(14)

Oy =MV +Enan = [ ONOk ) (V<) LENan (15
N « Qx +Enan <0| M("'NQN()

The relationship between both transformation matricesvisrg
by:
K{TNF = (NTKV)T (16)

Articulated Momentum Vector
The articulated momentum vectBr of a rigid bodyK in a

multibody system is defined as the sum of the momentum vector

of that body and the reduced momentum vectoralbfts out-

of the considered body and calculating the momentum vedtor ¢
the obtainedarticulated structure. The articulated momentum
vectors can be derived with a backward recursion:

Pi =Py + ZKTFP i € {outboard bodies (17)
|

Py =P«+ 5 “1FP; j € {adjacent outboard bodikél8)
]

It can also be expressed as:

Pi = MO + Dk (19)

with the so called articulated mass mathik* and the remain-
der momentum vectdd. These quantities can be obtained in a
backward recursion step.

M :MK—&-ZK‘TJFMT'TKV (20)
]

Dk :ZquFDj j € {adjacent outboard bodips (21)
J

My =My — M{ExM; ERMy; (22)

M j=EXMEx (23)

Di =M{ExM;}(px —EgDx«)+ Dk (24)

Canonical Momenta

It can straightforwardly be proved that the projection @& th
articulated momentum vector on the subspace of virtualenoti
of a certain joint results in a set of canonical momenta agettied
to the coordinates describing that motion.

N aQ'TP S Kr:FPy = EX P
Pk = = i Fi=
aqK Z< K [ |;< i [ KK

Equations Of Motion

Using the equations of motion (8) for a single rigid body
and the concept of articulated momentum vector, the equatio
of motion for each body of a MBS can be obtained:

(25)

kK +Qk X P =Tk +Try (26)

The unknown reaction forces can be eliminated by projeaiion

board bodies. This is equivalent to freezing all outboard links the subspacE:

4
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pr = ER(Tik — Qk x P}) +ExPk (27)

The coordinate velocities can be found using (19) in a fodwar
recursion step:

O = MIER[(Pc— D) ~ M7 O i) (28)

EQUATIONS OF MOTION FOR CONSTRAINED MBS

The principle of the method for obtaining the recursive
Hamiltonian equations for a constrained MBS will be shown
through an example, as a general description would be tap lon
and tedious. The method is based on reductions of dependent
spatial velocities [15, 16] to independent spatial velesit The
relative (or joint) coordinates are partitioned in a setafapen-
dent and a set of dependent coordinates, which results ima mi
imal formulation. Note that the canonical momenta are omely d
fined for the independent coordinates. The choice of depgnde
coordinates is arbitrary, but should always be valid: slaigu
ties can occur and should be avoided. In this example however
the dependent coordinates are chosen at the tip of the yimdgrl
open-loop structure. This simplifies the calculations. r€he a
loss in generality, but the purpose of the paper is to prethent
basic ideas of the algorithm, not to explain it in full desaiDne
may revert to [20] for a general discussion of acceleratasell Z Big' =0 i € {independent bodiés (31)
equations. [

The considered example is a chain of bodies interconnected
by pin-joints, the base body 1 being connected to a fixedialert e coefficient® can now be set to zero arOF first order
frame 0. A closed loop is created by connecting the last eéme jifrerential equations are obtained.
N of the chain to the fixed inertial fran® The number of links
N is arbitrary, but must be more than two.

Figure 3. EXAMPLE OF A CONSTRAINED MBS.

These equations must be fulfilled for every set of allowetlair
coordinate velocities. For unconstrained systems, thensiehe
coefficientsA can all be set to zero, leadingltfirst order differ-
ential equation#\; = 0. In the case of constrained systems with
DOF degrees of freedom, a partition can be made in dependel!
and independent coordinates. Expressing the dependéumalvir
coordinate velocities as functions of the independent ghes:

Jacobian Of The Constraint Equations
The relation between dependent and independent coord

Principle Of Virtual Power L o . .
P nates is given implicitly by the constraint equations:

The principle of virtual power states that reaction forcets a
ing on a mechanical system do not deliver any power under a
virtual motion [21]. It can be expressed under following form: ®(q) =0 (32)

ST (Pi+QixPi~Ti)] =0, (29)

| Dealing with these equations directly is not an easy tasg,ish

why their time-derivatives are often taken, leading to atieh-

Q* being thevirtual spatial velocities. These equations can be ship between the coordinatelocities

written as functions of theirtual coordinate velocitie§* by us-
ing (15): . o

®qq = — at (33)

. Aigf =0 (30) ®, is the Jacobian matrix of the constraint equations. After pa
i; H titioning in dependently and independer; coordinates, one
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gets:
) . 0P
q’qud + ‘inQi = _E (34)
) _ . 00
qa = _Cqul(Cinqi + E)a (35)

which gives the relationship between the dependent andttee i
pendent coordinate velocities. Needless to say that amreuto
partitioning will lead to singularity or at least bad conaliting
of @g,,.

Using the Jacobian matrix to obtain equations (31) results

in expressions for the coefficienB which are of orden? and
which introduce a high coupling of the equations of motion. |
is therefore unsuitable for the goal to achieve a recurSig®
method.

Dependent Spatial Velocities

Instead of using the Jacobian in an explicit way, one can de-

scribe the spatial velocity ofdependent bodfghich joint coor-

dinates are chosen as dependent ones) as a function of tied spa

velocity of the adjacent inboard body [16]. As will be shown,
this leads naturally to an expression for the canonical nmane
and to anO(n) method to obtain the Hamiltonian equations of
motion.

The example on fig.3 has— 2 degrees of freedom. Closing
the loop by connectingyl to C introduces 2 constraints and one
extra joint, which will be described by joint coordinage. As
a consequence, there are 3 dependent coordinates whidbewill
chosen agn—1, qn andgc. BodyC is fixed, its spatial velocity
is therefore zero:

Qc =1/ Qn +Ecfc =0 (36)

After projection on subspade:, an expression for joint velocity
C is obtained:

dc = —(ELEc) TELCTY Qn (37)
= Co.5Ty/ On (38)
Substitution in (36) results in
CclryWQn=0 (39)
with
Cc =1+EcCq, (40)
6

This procedure can be repeated recursively for all depermaen
ordinates. For the next bod\, one gets (premultiplying by
EfN7 S this time)

an = —(ENM7d Cc 7y En) ~HENMIE Cc“ )Ty 1Qn-1
= Cay"TN-10N-1 (41)
Note that matrix Ef N7 E CcC7y En) needs to be regular. Singu-
larity would be the consequence of a bad partitioning in frede

dent and dependent coordinates. After substitution in, (43¢
gets

Qn = C\Ty 1 On-1 (42)
with
Cn = I +ENCy, (43)

There is one more dependent coordinate to find. Substitofion
(42) in (39) and premultiplying b7 results in

CiMry 1Qn_1=0 (44)

with
c; =" cclry Cy (45)
= ANChN (46)

which is a symmetrical matrix. Further calculations yield:

On-1 = Cy ," TN 2On-2 (47)
Qno1 = CN,1N7]*T,\Y_ZQN,2 (48)
with
CEN_l = —(EN Y7 GV 1 En-1) THER TN GV )
Cno1 =1+ EN,lcgN_l (49)

The constraints matriceS* and Cg are found through a back-
ward recursion step, the joint and spatial velocities tgioa
forward recursion step. Note th&C = C, this means it is a
projection operator. Note also thag = 0.
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Canonical Momenta

The canonical momenta of a constrained multibody system
are only defined for the independent coordinates. Therenare i
this case thusN — 2 canonical momenta, which can be found
with:

T T
5y % Pt %% b (50)
i= |nd aq aq

Ke {lndependent bod@s

N aQT

21 GQK

Using (15), (42) and (48) yields

pk = ExPR (51)

with the so called constrained momentum vector

Pk =Pk +Y “77C[P§ € {adjacent outboard bodips
]
(52)
CjT is set to unity for independent bodies.

Equations Of Motion

The equations of motion of the constrained MBS will be
found using the principle of virtual power. To obtain a shiea
expression (31), one needs to write the virtual spatialoités
explicitly as functions of the independent virtual jointagties.
When going from the tifC to the base 0, the first encountered
independent coordinate @g,_». Following spatial velocities are
dependent oy _»:

Qn-_2=""21 3QN_3+EN_20N-2 (53)
Qn_1=Cn_1""7y ,Qn 2 (54)
QN =Cn“7y 1Qn-1 (55)

Substitution in the principle of virtual power leads to twiling
expression for coefficierBy_»:

Bn_2=EJ »(Pn_2+Qn_2 X Pn_2—Tn_2)
+EL NP Ol (Pno1 4+ On1 X Py —Teg)
+EN VAT 1CN 1N TN CU(PN+Qn x Py —Tn) =0

(56)

After the introduction of the constrained momentum vecs&)(
some tedious manipulations and a lot of perseverance, ibean
proved that following equality holds:

Pno14On1 X Pno1—Tnoa+ V78 Cl (P +Qn x Py —Th)
=P 1+ QN1 x PR — TR 4 (57)
with

TS =T+ Cl T

+ NI ICT 4 (Qn x DCY — ClL(Qn x 1]PN (58)

A comparable reduction can be made from bddy 1 to body
N — 2, ultimately resulting in the concise and familiar form

Pn—2=EN 2(TR 2— Qu-2x P} o) + EL?ZP,C\FZ (59)

with

Thoo=Tno2+" 2 1CL_1TR1
+N2dICh + (Qner x T4 C

(60)
-ll\—lfl(QNfl x 1)]PR_1

All the other bodieK can be handled as for in open-loop sys-
tems:

Pr = Ex (Tk — Q« x PR) + ExPg
Tk =Tk+ KTKF+1TCK+1

(61)
(62)

T¢ should of course be calculated in a second backward recu
sion, as it is dependent on the spatial velocities, whicltaleu-
lated in the forward recursion step. This extra recursiep
often needed when the forces are velocity dependent anyway.

Coordinate Velocities

The independent coordinate velocities are needed to obta
the remaining Hamiltonian equations. The dependent coateli
velocitiesgn_1, gn anddc were already calculated in the section
about dependent spatial velocities. To find joint velogjty »,
the projection of the constrained momentum vector on tha joi
axis is needed.
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Pn—2=EQ oP{ 2 =E} o(Pn—2+" 21§ 1C{ 1PR 1) (63)

Each term needs to be expressed as a functiénab. For body
N — 1, one obtains:

PR_1 = Pno1+ "7, ClPN
= (Mn_1+Vrf ciMyCMzY )N 1
=M§ 1On-1=MF_1Cnoa TN 2ON-2
M§ ;= Myo1+N b ciMvenry

(64)
(65)

Mg, _, being the constrained mass matrix. For bddy 2, one
subsequently gets:

PRz = M2+ "7 1 LM 1 Cna™ T o] QN 2
= MR_Qn-2 (66)
MR_2 = Mn 247 1Cl_1M{_1Cn- 1" 7y, (67)

The joint velocitygn_2 can easily be derived from above equa-
tions:

Pn—2 = EN oPR 2
= E_oMR_o(" P78 3Qn-3+En-20n-2) (68)
an-2 = (EN_oM§&_oEn—2) H(pn—2 — EN_oM§ " 270 3Qn-3)

—1
= MS§,lpn-2— EQoMR NPT 5Qn ] (69)

To obtain the joint velocity for bodyN — 3, one can substitute
above equation in the expression for the constrained mament
vector.

PR_2 = MR_o(" *7T\_3On-3+ En—20n-2)
= MR oM7Y 3Qn-3

—1
+ En-2MS§, ,(pn-2— EN_oMR 2" T 5On-3)]

= My 2" 7y 3Qn 3+ Dy 2 (70)
/ —1
My 2 = M2 — M _,En-2MS LEN oM (71)
/ -1
Dn_2 = M{_2EN-2MS ,PN-2 (72)
8

Repeating previous procedure gives:

C N-3~F C
PN_3=Pn3+" Ty 2Pr 2

= (Mn-3+ "7 oMy NP1 5)On 3+ Ty oDy o

= M{_3Qn-3+Dn-3 (73)
M 3 = Mg+ 300 My NP1 g (74)
Dn_s = "1 ,Dy (75)
The joint velocity is then:
PN-3 = E1|\-|_3PK|73 (76)

= EX_sMR3(" TN 4Qn- 4+ En-38n-3) +E_sDn 3
n-3 = (EX_sMR_sEn-3) *(Pn-3—E}_3Dn-3
— E{_sMR_s" 1 4Qn-a)

1
=M (J;N—3(pN_3 —dn-3— EII—3M ﬁ—3N_BTI\\l/74QN—4> (77)

All the other joint velocities can be found just like for opkrop
systems.

SUMMARY OF THE ALGORITHM

Before calculating the Hamiltonian equations of motion, a
partition must be made in dependent and independent coord
nates. This should be done carefully, considering sing@vleon-
ditions. The actual algorithm is divided in 3 recursion step a
first, backward recursion step, the constraint matri@egfe con-
strained mass matricd4® and the remainder momentum vectors
D are computed. In the following, forward recursion stepcat
ordinate velocitieg] and all spatial velocity vectoiQ are calcu-
lated. In a last, backward recursion step, the accumulatee f
vectorsT¢ are obtained, from which the time derivatives of the
canonical momenta can be found.

CONCLUSIONS

In this paper, it was shown through a simple example how
an O(n) recursive Hamiltonian algorithm can be obtained for a
constrained multibody system. The use of the Hamiltoniaraeq
tions of motion has a positive influence on the evolution &f th
constraint violation errors, as constraints are introduateseloc-
ity level instead of acceleration level. Additionally, thkgorithm
is based on its open-loop variant, which proved to be more effi
cient than recursive acceleration based algorithms wheipao
ing the number of required arithmetical operations to abtae
equations of motion.
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