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abstract

This paper reports on an improvement of an earlier developed control algorithm for a one-legged
hopping robot. The algorithm, which allows the robot to hop on irregular terrain, consists of
two separate parts. By steering the motion of the leg the first part controls a number of objective
locomotion parameters, being forward velocity during flight, hopping height, step length and
stepping height. These objective parameters can be changed from one hop to another. This
part of the algorithm has been extensively discussed in [3]. The second part of the algorithm
controls the motion of the upper body, by making an adequate choice of the angular momentum
around the COG during the flight phase and by choosing a well determined value of the stance
time. This paper specifically focuses on the control of the upper body motion. Although the
algorithm allows for non-steady state motion, for simplicity reasons the control of the upper
body will first be tested on a number of consecutive steady state hops.

1. INTRODUCTION

When compared to the various publications made on walking machines, few research has been
done on running robots. Although the control of running robots is more complex, motion can
be much more performant. Because of the existence of ballistic flight phases, a running ma-
chine can attain higher forward velocities and can take steps with a greater length and a greater
height. The best known running robots are of course the ones developed by Raibert’s team at
the MIT [5]. However, the control algorithm used by these machines was basically a steady
state algorithm and has little control on the placement of the foot on possible footholds, making
its usefulness for locomotion on irregular terrain quite limited [4].

At the Department of Mechanical Engineering of the Vrije Universiteit Brussel, research has
been focused on the latter group of machines. The model being recently under study is a one-
legged hopping robot with an articulated leg, designed for hopping on unstructured terrain.
Earlier, De Man et al. introduced a control algorithm, which was first applied to a model with
a telescopic leg [1], and later to a model with an articulated leg [2], [3] and [6]. This algorithm
makes it possible to place the robot’s foot exactly on a desired foothold and to control its forward



velocity during flight. Further research on an experimental prototype showed however that the
algorithm had some drawbacks concerning the behaviour of the upper body. The aim of this
paper is to overcome these drawbacks, which results in a more effective algorithm.

In section 2 of the paper a description of the model is given. Section 3 explains the underlying
idea of the control algorithm. In section 4 simulation results are given, whereas in section 5
conclusions are drawn.

2. THE MODEL [3]

The control of a running machine is more critical than the control of a walking machine. To
be able to study all the features of a running machine, such as its underactuated and nonholo-
nomic nature, without unnecessarily increasing the complexity of its design, a robot having one
articulated leg is considered here and its motion is restricted to the sagittal plane.

Figure 1 depicts the robot at the moment of take-off and at the moment of touch-down. The
robot consists of three segments: a lower leg (segment 1), an upper leg (segment 2) and a body
(segment 3). The different links are connected to each other through rotational uni-axial joints.

The length of the i-th link isli, its mass ismi and the moment of inertia around its center of
massGi is Ii. The angle between the horizontal and the i-th segment isθi. Point F will further
be referred to as the foot of the robot, point K as its knee and point H as its hip. The location
of the center of massG1 of the lower leg and the location of the center of massG2 of the upper
leg are given byFG1 = αl1 andKG2 = βl2, where0 < α, β < 1. The center of massG3 of
the body coincides with the hip.

Figure 1: robot at take-off (to) and at touch-down (td)

The actuation of the robot consists of a passive part, formed by a torsional spring placed at the
knee, and an active part, built up by two actuators exerting a torque at the knee and a torque at
the hip respectively. For the sake of clarity the spring and the actuators are not depicted on the
figure.



The ground is modelled as a spring-damper combination. Both in the horizontal and in the
vertical direction a stiff linear spring and a damper are placed in parallel. This model allows to
simulate the flight phase, during which there is no contact with the ground, the impact phase,
when the foot hits the ground, and the stance phase, during which the robot stands on the ground,
all without mathematically changing the number of degrees of freedom (DOF) of the system.
However, by tuning the spring constants and the damping coefficients it is possible to keep the
displacement of the foot during stance arbitrarily small, thus virtually reducing the number of
DOF of the robot.

Considering the previous remark the robot has 5 DOF during flight and 3 DOF during stance (the
assumption has been made that the foot of the robot does not slip). The generalized coordinates
used to describe the motion of the robot are the coordinatesXF andYF of the foot, measured in
the reference frame OXYZ, and the anglesθ1, θ2 andθ3.

3. THE CONTROL ALGORITHM

3.1 Flight Phase

3.1.1 Leg Motion [3]

Since the center of gravity of the body coincides with the hip, the orientation of the body has
no influence on the position of the global center of mass. This means that there is a complete
decoupling between the motion of body and leg. The motion of the leg determines the motion
of the center of mass. Constraining the motion of the center of gravity to a ballistic trajectory
results in 2 constraint equations on the 4 generalized coordinates(XF , YF , θ1, θ2) of the leg,
which means that only two of these coordinates are independently controllable.

The two controlled coordinates being chosen in this paper are the absolute angles of lower and
upper leg with respect to the horizontal axis, beingθ1 andθ2.

Relationships between the equations dictating the parabolic trajectory of the global center of
gravity and the objective locomotion parameters to be controlled, being the forward velocity,
the jumping height and the position of the foot at touch-down, are established [3]. Using these
relationships the orientationθ1 of the lower leg, the orientationθ2 of the upper leg, the angular
velocitiesθ̇1 andθ̇2, and the angular accelerationsθ̈1 andθ̈2, needed at take-off and touch-down
are calculated. Next, reference trajectories for both angles, being noted asθ1(t)

fl andθ2(t)
fl

are generated, satisfying the boundary conditions at take-off and touch-down. These trajectories
are 5th order polynomial functions, being tracked by the PD-controlled actuators at knee and
hip respectively.

3.1.2 Body Motion

The only generalized coordinate associated with the upper body motion, being its absolute angle
with respect to the horizontal axisθ3, is submitted to the nonholonomic angular momentum
constraint with respect to the global center of gravity. Thus, body attitude can not be directly
controlled during flight, its pitch angle and angular rate are determined by inertia. In this model,



body inertia is chosen significantly larger than leg inertia, in order to reduce the upper body
rotation resulting from the leg swing during flight.

During flight the angular momentum with respect to the global COG equals a constant. It can
be written as follows:

µfl
G (t) = cθ̇1 + dθ̇2 + e(θ̇1 + θ̇2) cos (θ1 − θ2) + fθ̇3 = µfl

G (1)

The constants c, d, e, and f are determined by the lengths and mass and inertia parameters of
the different links.

Integrating (1) from 0 to the flight timeT fl leads to the following expression for the upper body
rotation during flight:

∆θfl
3 =

µfl
GT fl − Afl

f
(2)

with:

Afl = c∆θfl
1 + d∆θfl

2 + e

T Fl∫

0

(θ̇1 + θ̇2) cos (θ1 − θ2) dt (3)

and∆θfl
i representing the variation ofθi during flight.

It is clear, that if we want to control the motion of the upper body, the rotation given in (2) should
be compensated during the stance phase. If not, the rotation starts drifting which eventually
causes the robot to fall.

3.2 Stance Phase

3.2.1 Leg Motion [3]

Because of the constraint on the leg during stance demanding that the foot should stay at a
fixed position, the same two controlled coordinates are chosen as during flight. Let’s consider a
hopping pattern of steady-state consecutive hops as a first experiment. For the robot to be able
to perform a hop with certain desired values for the objective locomotion parameters, there is
some control needed during the stance phase, yielding the desired initial conditions at take-off.
Thus, the values forθ1, θ2, and their first and second derivatives at the end of the stance phase
are those of the beginning of the next flight phase. The values forθ1, θ2, and their first and
second derivatives at the beginning of the stance phase are those measured after impact.

Again, in an analogue way as during flight, 5th order polynomials can be calculated, which are
the reference trajectoriesθ1(t)

st andθ2(t)
st for lower and upper leg respectively, being tracked

by the PD-controlled acuators at knee and hip.

3.2.2 Body Motion

During stance, body motion is submitted to a constraint, resulting from the fact that the angular
momentum with respect to the foot only depends on gravity. The rotation of the upper body is



determined by this constraint and can therefore not directly be controlled. However, by making
a good choice of the angular momentum with respect to the COG during flight and the stance
time, the robot will be able to compensate the rotation of the body caused during the preceding
flight phase.

During stance a rotation of the body∆θst
3 is introduced. We reach a controlled body motion

when, considering one flight and stance phase, following condition is achieved:

∆θfl
3 + ∆θst

3 = 0 (4)

Integration of angular momentum constraint with respect to the footpoint F yields the variation
of the angular momentum during stance:

∆µst
F = −gM

T st∫

0

(a cos θ1 + b cos θ2) dt (5)

Where a and b are constants determined by the lengths and masses of lower and upper leg.

Since we consider steady-state motion, the angular momentum with respect to G in the next
flight phase should be equal to the one in the preceding flight phase. By making use of this
condition and by applying the transport equation on the angular momentum, the left hand side
of (5) is completely determined. This means that (5) determines an ideal value for the stance
time T st∗, which guarantees that the angular momentum with respect to the COG will be the
same in the two consecutive flight phases.

Further, it can be shown that∆θst
3 is given by:

∆θst
3 =

(µfl
G + Bst)T st∗ − Ast

s
(6)

with:

Ast = p∆θst
1 + q∆θst

2 + r

T st∗∫

0

(θ̇1 + θ̇2) cos (θ1 − θ2) dt

+ gM

T st∗∫

0

(

ε∫

0

(a cos θ1 + b cos θ2) dε) dt (7)

and:
Bst = ∆µshock

F + (F̄G
td ×MV̄G

td
)|z (8)

The constants p, q, r and s are determined by the lengths and mass and inertia parameters of
the different links. M is the total mass of the robot and∆µshock

F is the variation ofµF during
impact.

Imposing (4), leads then to a linear equation which can be solved forµfl
G , resulting in a desired

value for the angular momentum with respect to G during flightµfl∗
G :

µfl∗
G =

Afl + Ast −BstT st∗

T fl + T st∗ (9)



which can of course be translated in a desired value forθ̇3
to

. Thus, when the robot starts its
first flight phase with the right angular velocity of the body , and when the actuators track the
desired polynomials during flight and stance respectively, the robot reaches steady state motion.
This steady state behaviour guarantees the same values for the objective locomotion parameters
during the consecutive hops, as well as a stabilized motion of the body.

4. SIMULATION RESULTS

To test the algorithm described above a hopping pattern consisting of a number of consecutive
hops has been simulated. Since we consider steady state behaviour, the values of the desired
objectives, being forward velocity during flight, step length, stepping height, orientation of the
leg at take-off and touch-down, and behaviour of the body, are the same for all hops. The chosen
parameters are the following:

• ẊG
∗

= 1 m/s

• XF
∗ = 0.5 m

• YF
∗ = 0 m

• θto
3 = 0

This results in:

• µfl∗
G = 0.622 kgm2/s

• ∆θfl
3 = 0.1084 rad= −∆θst

3

• T st∗ = 0.34 s

Figure 2 shows the rotation of the upper bodyθ3 versus time. The graph shows that the rotation
during stance is equal and opposite to the rotation during flight. Thus, after one stride, the angle
equals zero again.

Figure 3 gives the angular momentumµG with respect to G versus time. The horizontal parts
of the graph give the momentum during the flight phase, equaling the ideal value as calculated
by the control algorithm.

Figure 4 shows the horizontal positionXF of the foot point F versus time. The horizontal parts
of the graph give the position of the foot during the successive stance phases. It can be seen that
the difference between the position during two successive stance phases is equal to the desired
step length of 0.5 m.

Figure 5 shows the forward velocitẏXG of the global center of mass versus time. The horizontal
parts of the graph give the velocity during the flight phase, equaling the desired value of 1 m/s.
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Figure 2:θ3 [rad] as a function of time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (s)

Flight Stance

Figure 3:µG [kgm2/s] as a function of time
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Figure 4:XF [m] as a function of time

5. CONCLUSIONS

A control algorithm for a one-legged hopping robot has been developed. The algorithm allows
to change a number of objective locomotion parameters from one hop to another. During this
motion, the upper body behaviour has to be controlled. Simulations show that in the case of
a steady-state motion, the body motion can be controlled without introducing extra torques
directly acting on the body. By making a specific choice of the angular momentum during flight
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Figure 5:ẊG [m/s] as a function of time

and by choosing a well determined value of the stance time, the rotation of the upper body
caused in a preceding flight phase is automatically compensated in the next flight phase. For
the moment, simulations are being performed where transitions from one steady state motion to
another are made.
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