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Abstract: A new method for establishing the equations of motion of multibody mecha-
nisms based on canonical momenta is introduced in this paper. In absence of constraints,
the proposed forward dynamics formulation results in a Hamiltonian set of 2n first order
ODE’s in the generalized coordinates q and the canonical momenta p. These Hamiltonian
equations are derived from a recursive Newton-Euler formulation. It is shown how in the
case of a serial structure with general joints, an O(n) formulation is obtained. The amount
of required arithmetical operations is considerably less than comparable acceleration based
formulations.

1 INTRODUCTION

During the last decades, a lot of research has been done to find new algorithms, new
numerical integration techniques and better implementation methods to speed up the
dynamical simulation of complex multibody mechanisms. Amongst many others, Feath-
erstone,10 Kane and Levinson,9 Rosenthal,12 Vukobratović,14 Jerkovsky8 and Baraff15 put
significant efforts in finding efficient order N methods to derive the equations of mo-
tion. Lankarani,6 Bayo and Avello7 developed techniques to integrate these equations
in a stable and efficient way. Work has also been done to implement algorithms on a
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parallel computing architecture (Bae et al.16). All this research and the fast evolution
of computer technology resulted in quite fast simulations nowadays. These simulations,
however, involve mechanisms of ever increasing complexity (large amount of parts, flexi-
bility, friction, backlash) and demand an ever increasing accuracy and, hence, number of
computations. It is therefore interesting to continue this research in order to find more
efficient algorithms. In previous publications17,,18 we took a step in that direction and
presented a new, canonical momenta based algorithm, which allowed a speedup of simu-
lations by reducing the number of operations required to obtain the equations of motion.
That algorithm was however tailored for mechanical systems with rotational joints with
one degree of freedom. In this paper, a more general approach is adopted to allow any
kind of kinematic constraints between the bodies, rheonomic ones included.

2 LAGRANGE’S EQUATIONS

The equations of motion for a multibody system described by n generalized coordi-
nates q and having m holonomic constraint conditions can be found using the well-known
Lagrangian approach1,2,:5

d

dt
(
∂L

∂q̇
) −

∂L

∂q
+ ΦT

q λ = Q (1a)

Φ(q, t) = 0 (1b)

L = T − V is the Lagrangian function, where T and V are respectively the total kinetic
and the total potential energies of the system. Q are the external generalized forces,
Φ are the constraint equations, Φq is the Jacobian matrix of these constraints and λ

are the Lagrange multipliers. Equations (1) form a mixed set of differential algebraic
equations (DAE). To solve this set using conventional numerical integration schemes, it
has to be turned onto a set of ordinary differential equations (ODE). This can be done
by differentiating the constraint equations (1b) twice with respect to time:

Φqq̈ + Φ̇qq̇ + Φ̇t = 0 (2)

Φt is the partial derivative of the constraints with respect to time. In multibody system
dynamics, the resulting ODE is typically put in following matrix notation:

(
M ΦT

q

Φq 0

)(
q̈
λ

)
=

(
Q + Lq − Ṁq̇

−Φ̇qq̇ − Φ̇t

)
(3)

M is the mass matrix. The use of the constraint equations at the acceleration level (2)
does not have any theoretical repercussion, it does however induce problems during nu-
merical integration. As small numerical errors are introduced on the acceleration level,
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these will be integrated twice and will result in uncontrolled errors on the velocity and
position levels. Therefore the need for stabilization methods for the constraint violation
errors. Well known procedures are the Baumgarte3 stabilization method and the coor-
dinate partitioning method.11 Promising alternatives using a manifold approach where
proposed by Blajer20 and Terze.19

3 HAMILTON’S EQUATIONS

The Hamiltonian equations can be found by applying a Legendre transformation on
the Lagrangian.1 This transformation changes the description of the system in terms of
generalized coordinates q and velocities q̇ to a description in terms of the same coordinates
q and their conjugated canonical momenta p. These canonical momenta are defined as:

p =
∂L

∂q̇
(4)

They are an extension of the concept of linear and angular momenta to generalized coor-
dinates. Applying the Legendre transformation yields

q̇ =
∂H

∂p
(5a)

ṗ = −
∂H

∂q
+ Q − ΦT

qλ (5b)

Φ(q, t) = 0 (5c)

This is a set of DAE’s with 2n first order differential equations and m kinematic constraint
equations. H = pT q̇ − L is the Hamiltonian function. DAE’s are characterized by a so-
called differential index. The acceleration based formulations have an index of 3, the
Hamiltonian formulation has index 2.5 As shown by Brenan et al.,4 index 2 DAE’s have a
better behavior during numerical integration. Hence, the use of canonical momenta may
be numerically advantageous compared to the use of accelerations. Transforming DAE
(5) into a set of ODE’s, in analogy with the Lagrangian formulation, leads to the same
conclusion. This can be seen by considering the equations of motion as the solution of
a variational problem with constraints6.7 This implicates the definition of the so-called
augmented Lagrangian which includes the constraints on the velocity level:

L∗ = L + Φ̇
T
σ (6)

It results in following set of equations:

(
M ΦT

q

Φq 0

)(
q̇
σ

)
=

(
p

−Φt

)
(7)

together with
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ṗ = Lq + Q + Φ̇
T

qσ (8)

As the constraints were used at the velocity level, the numerical errors are integrated only
once, resulting in smaller constraint violations.
This paper however describes an effort to construct sets of Hamiltonian equations for serial
structures. When using the joint coordinates as generalized coordinates, no constraint
equations (5c) are needed and the last term of (5b) disappears. The forward dynamic
problem can be stated as to evaluate functions G1 ans G2 in following general form:

ṗ = G1(q,p, t) (9a)

q̇ = G2(q,p, t) (9b)

Hamiltonian equations are computationally intensive to derive straightforwardly, for the
Hamilton function H has to be established from the Lagrangian function L which already
requires a considerable amount of arithmetical operations. This is probably the reason
for the lack of interest in Hamilton’s equations in the domain of multibody mechanics. In
most acceleration based O(n) algorithms, the equations of motion are found by recursion.
This way the direct derivation of the Lagrangian function L and its partial derivatives are
avoided and much faster evaluations of the equations of motion are obtained. However,
it also seems possible to find an O(n) algorithm based on canonical momenta. That
algorithm, as will be shown in the following sections, has a reduced number of operations,
compared even to the most efficient acceleration based algorithms. This advantage and
the improved numerical behavior makes it a very promising alternative.

4 NEWTON-EULER IN RELATIVE AXES

The classical formulation of the Newton-Euler equations for a single free moving body
is given by

m
d0vG

dt
= f (10a)

JG

dK
ω

dt
+ ω × JGω = tG (10b)

The first equation is typically written in an inertial reference frame (notation d0

dt
), while

the second is formulated in a frame K fixed to the body (dK

dt
). The force and the torque

that act on the object are represented by f and t. The matrix J is the inertia tensor, m

is the mass of the body, ω is the angular velocity referred to the inertial axes and vG the
linear velocity of the center of mass (see figure 1). The index G denotes that the momenta
and the tensor of inertia are taken with respect to the center of mass.
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(a) Kinematics (b) Dynamics

Figure 1: Notation on a single rigid body

The 6-dimensional momentum vector will be needed, it is defined as follows:

P =

(
pl

pa

)
=

(
mI mG̃O

mÕG J

)(
v
ω

)

K

= MΩ (11)

This is not the same vector as was used in the previous section to denote the canonical
momenta p. Inspection of P reveals that it is nothing more than a concatenation of the
linear (pl) and angular (pa) momenta of the rigid body. I is a unity matrix, v the linear
velocity of the origin O of the local reference frame. This origin must lie on the rotational
joint axes, if present. J is the tensor of inertia referred to point O. M is here also called
mass matrix, but it is not the same as in previous section. In the remainder of the article,
only this mass matrix will be referred to. x̃ is a skew-symmetric matrix constructed from
the vector x and is an alternative notation for the cross product.

x × a = x̃ a =




0 −x3 x2

x3 0 −x1

−x2 x1 0






a1

a2

a3


 (12)

Ω is the spatial velocity vector. It can be written as a function of the coordinate velocities:

Ω = Ejq̇ + Ωt (13)

We call Ej the joint matrix. The column vectors of the joint matrix form a basis for the
space of virtual motions and are hence orthogonal to the space of the generalized reaction
forces. They are the partial derivatives of the spatial velocity vector to the generalized
coordinates. The coordinate velocities vector q̇ has dimension n, which is the number of
degrees of freedom of the body. The joint matrix therefore has dimensions 6 × n. Ωt is
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the partial derivative of the spatial velocity vector with respect to time. It disappears
when scleronomic constraints are considered.
Instead of trying to find an algorithm directly starting from the Hamiltonian equations, the
Newton-Euler equations (10) are reformulated in relative axes, and written with respect
to the origin O. Note that the relation between the time derivatives in two different
frames K and L is given by

dLx

dt
=

dKx

dt
+ ωr × x (14)

ωr is the relative angular velocity of frame K with respect to frame L.
Furthermore, the momentum vector (11) is introduced in the equations. After some math-
ematical manipulations, and observing that pl = mvG, equations (10) can be reformulated
as:

(
ṗl

ṗa

)
+

(
ω̃ 0
ṽ ω̃

)(
pl

pa

)
=

(
f
t

)
(15)

By convention, all momenta are taken with respect to the origin O of the local reference
frame. ẋ stands for the time derivative in local axes, e.g. ω̇K = dK

ωK

dt
. This means that

ṀK = 0.
We will go further in the conciseness of the equations, by defining a 6-dimensional

cross product as follows:

Ω× =

(
v
ω

)
× ,

(
ω̃ 0
ṽ ω̃

)
(16)

The equations of motion for a single rigid body then become

Ṗ + Ω × P = T (17)

with T =
(
f m

)
T

.
It can easily be shown that the kinetic energy T of a single rigid body can be expressed
as:

T =
1

2
ΩTMΩ =

1

2
ΩTP (18)

Calculating the canonical momenta with (4) yields

p =
∂L

∂q̇
=

∂T

∂q̇
=

∂ΩT

∂q̇
MΩ = ET

j MΩ = ET
j P (19)

The canonical momenta p conjugated to the generalized coordinates q are thus the pro-
jections of the momentum vector P on the joint axes.
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5 FIRST SET OF EQUATIONS (G1)

5.1 Articulated momentum vector

In this section we will derive one set of equations depicted in (9), namely the one
involving the evaluation of the function G1. The other set will be discussed in the next
section. Rewriting (17) for the last body N and splitting the external generalized forces
in the known external part TN and the unknown reaction part TrN

—resulting from the
interaction with the previous body N − 1— gives

ṖN + ΩN × PN = TN + TrN
(20)

For the remaining inboard bodies, the equations become more involved, as there are two
locations where reactions occur (fig. 2). Body K = N − 1 is connected with bodies K − 1
and N . Therefore the equations of motion can be written as

ṖK + ΩK × PK = TK + TrK
− KT F

N
TrN

(21)

Figure 2: Reactions on body K
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By convention, the reactions (torques) from body N are taken with respect to point ON

on the joint axis. To transmit these reactions to origin OK, the transformation matrix
KT F

N
is used:

KT F

N
=

(
I 0

ÕKON I

)
(22)

Note that this matrix is constant in the local reference frame. Observe also that the
velocities transform in a similar way:

ΩN = NT V

K
ΩK + EjN

q̇N + ΩtN =

(
I ÕNOK

0 I

)(
vK

ωK

)
+ EjN

q̇N + ΩtN (23)

The dimensions of the joint matrix EjK
(6× nK) and the coordinate velocities vector q̇K

(nK × 1) for a certain joint K is dependent on the number of degrees of freedom nK of
that joint.
The relationship between both transformation matrices is given by:

KT F

N
= (NT V

K
)T (24)

The projection of the additional reactions on the joint space cannot be ignored, but can
be eliminated by means of the equations of motion for body N (20). Grouping the similar
terms, remembering to derive with respect to the correct coordinate system using (14)
and performing some mathematical manipulations give

d
K

dt

[
PK + KT F

N
PN

]
+ ΩK ×

[
PK + KT F

N
PN

]
= TK + TrK

+ KT F
N

TN (25)

After defining the articulated momentum vector P∗ and the accumulated force vector T∗

as

P∗
K

= PK + KT F
K+1

P∗
K+1

(26)

T∗
K

= TK + KT F
K+1

T∗
K+1

(27)

a concise system of equations is obtained with the same appearance as (20):

Ṗ∗
K

+ ΩK × P∗
K

= T∗
K

+ TrK
(28)
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5.2 Canonical momenta

Equations (28) are not very useful yet, as unknown reaction forces are still present.
To eliminate them, we first need to calculate the canonical momenta of the multibody
system, using (19):

pK =
∂L

∂q̇K

=
∂(
∑N

i=1 Ti)

∂q̇K

=
1

2

∂(
∑N

i=1 ΩT
i MiΩi)

∂q̇K

(29)

Ti being the kinetic energy of body i. In open-loop systems, the spatial velocity ΩK is
independent on the outboard joint velocities, and so is the kinetic energy of body K. For
the canonical momenta conjugated to body N , we therefore get the same expression as
(19):

pN =
∂TN

∂q̇N

= ET
jN

PN (30)

Before deriving the expression for the other bodies, we will first make following observa-
tion, which can easily be done by inspecting (23):

∂ΩL

∂q̇K

= 0 ∀K > L (31)

∂ΩL

∂q̇K

= LT V
K EjK

∀K ≤ L (32)

For body K, we get (using (24) and (26))

pK =
∂(TK + ... + TN)

∂q̇K

=
∂ΩT

K

∂q̇K

PK + ... +
∂ΩT

N

∂q̇K

PN (33)

= ET
jK

(PK +
N∑

i=K+1

KT F
i Pi) = ET

jK
P∗

K (34)

Thus, the projection of the articulated momentum vectors on the joint vectors leads to
the set of canonical momenta conjugated to the joint coordinates. As was said before,
the generalized reaction forces are orthogonal to the space described by the joint matrix
(ET

jK
TrK

= 0). Keeping in mind that ṗ = ĖT
j P + ET

j Ṗ, the projection of equation (28)
on EjK

yields

ṗK = ET
jK

T∗
K
− ET

jK
(ΩK × P∗

K
) + ĖT

jK
P∗

K
(35)

This is the first set (G1) of Hamiltonian equations. It can only be evaluated with known
values of the velocities, these will be derived in next section.
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6 SECOND SET OF EQUATIONS (G2)

To obtain the second set of Hamiltonian equations, the one involving the function
evaluation G2 (9b), the generalized velocities q̇ need to be expressed as a function of the
canonical momenta vector p and the generalized coordinates q. This can be done starting
from the expression of PN (11) and writing the spatial velocity as an explicit function of
q̇N with (23).

PN = MNΩN = MN(NT V

N−1
ΩN−1 + EjN

q̇N + ΩtN ) (36)

Projecting these equations on the joint space and rearranging the terms give an expression
for the generalized coordinates:

q̇N = M−1
jN

[pN − ET
jN

MN(NT V

N−1
ΩN−1 + ΩtN )] (37)

with Mj the joint mass matrix defined as

Mj = ET
j MEj (38)

The expression is of the required form, as the velocity vector Ω is dependent on the joint
velocities of all inboard links. If similar equations are found for all other bodies, the
velocities can be computed recursively starting from the base. These equations can be
obtained by first eliminating q̇N from (36) by means of (37), and rearranging the terms:

PN = M′
N
(NT V

N−1
ΩN−1 + ΩtN ) + D′

N
(39)

with

M′
N

= MN − MNEjN
M−1

jN
ET

jN
MN (40)

D′
N

= MNEjN
M−1

jN
pN (41)

M′ is called the reduced mass matrix. D′ is a remainder term. Substitution of (39) in
(26) results in the desired formulation.

P∗
K

= M∗
K
ΩK + DK (42)

with

M∗
K

= MK + KT F

N
M′

N

NT V

K
(43)

DK = KT F

N
(M′

N
ΩtN + D′

N
) (44)
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M∗ is the articulated mass matrix and D the momentum remainder term. We denote the
projection of the remainder momentum vector on the joint space with the vector d. P∗

K

does now have a form similar to PN and the velocities q̇K can be found, as for body N :

q̇K = M−1
jK

[(pK − dK) − ET
jK

M∗
K
(KT V

K−1
ΩK−1 + ΩtK )] (45)

Repeating the procedure for the other bodies reveals a slightly different structure for MjK
,

M′
K

and D′
K
:

MjK
=ET

jK
M∗

K
EjK

(46)

M′
K

=M∗
K
− M∗

K
EjK

M−1
jK

ET
jK

M∗
K

(47)

D′
K

=M∗
K
EjK

M−1
jK

(pK − dK) + DK (48)

The spatial velocity Ω0 of the base is known, so the vector of coordinate velocities q̇1 at
joint 1 can be computed. These can thereafter be used to compute the velocity vector
Ω2 which on its turn enable the calculation of the joint velocities q̇2 and so on. All joint
velocities can be found by forward recursion. The obtained spatial velocity vectors are
used to compute the first set of Hamiltonian equations (35) derived in the previous section.
So, in a first, backward recursion, the articulated mass matrices M∗, the momentum
remainder vectors D and the accumulated forces T are calculated. In a subsequent,
forward recursion, the joint velocities q̇ and time derivatives of the canonical momenta ṗ
are computed. Acceleration based algorithms typically need a third recursion step for the
forward kinematics. This gives an additional advantage to the canonical momenta based
method, when implemented on a parallel computing architecture.

In the case only pin-joints are used, a thorough inspection of the algorithm revealed
a maximum of 363 operations are needed for each body. Due to simplifications at the
first and last bodies, this amount is reduced with at least 475 operations for the complete
mechanism. This can be written: 363n − 475, with n the number of bodies (degrees of
freedom). This formula is applicable for n ≥ 3. For comparison, a list of acceleration
based algorithms and their amount of operations is shown in following tabel.

7 CONCLUSIONS

In this paper, a previously introduced recursive O(n) algorithm for the derivation of
a set of Hamiltonian equations has been generalized to cope with any kind of holonomic
joint. The method is very promising compared to acceleration based algorithms thanks
to a reduced number of arithmetical operations needed to obtain the equations of motion,
a potentially advantageous behavior during numerical integration and a reduced number
of recursion steps.
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Algorithm Add. Mult. Total
Featherstone10 275n − 18 336n − 220 611n − 238
Vukobratović14 231n − 294 249n − 272 480n − 566
Valášek21 206n − 345 226n − 343 432n − 688
Rein13 195n − 247 216n − 317 411n − 669
Naudet-Lefeber18 178n − 230 185n − 245 363n − 475

Table 1: Number of required operations

8 FUTURE WORK

The next step in this research will be to develop a method to obtain the reaction
forces and torques between the bodies of an open-loop multibody system. Afterwards,
the algorithm will be extended to handle systems with kinematical loops. Preliminary
research pointed out that this should be possible with a recursive method.
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[14] M.K. Vukobratović, V.F. Filaretov and A.I. Korzun, ”A Unified Approach to Mathe-
matical Modelling of Robotic Manipulator Dynamics”. Robotica, 12, 411-420 (1994).

[15] David Baraff, ”Linear-Time Dynamics using Lagrange multipliers”, Computer
Graphics Proceedings, Annual Conference Series, 137-146 (1996).

[16] Dae-Sung Bae, Jon G. Kuhl and Edward J. Haug, ”A Recursive Formulation for
Constrained Mechanical System Dynamics: Part III. Parallel Processor Implementa-
tion”, Mechanics of Structures and Machines, 16(2), 249-269 (1988).

[17] Dirk Lefeber, Joris Naudet, Zdravko Terze and Frank Daerden, ”Forward dynamics
of multibody mechanisms using an efficient algorithm based on canonical momenta”.
NATO ASI Workshop on Virtual Nonlinear Multibody Systems, 1, 121-126 (2002).

[18] Joris Naudet, Dirk Lefeber and Zdravko Terze, ”Forward Dynamics of Open-Loop
Multibody Mechanisms Using an Efficient Recursive Algorithm Based on Canonical
Momenta”, Multibody System Dynamics (to be published).

[19] Zdravko Terze, Dirk Lefeber and Osman Muftić, ”Null Space Integration Method for
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