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Chapter 1

Introduction

1.1 Motivation

Exactly �fty years ago, in 1959, a prototype of Unimation Inc.'s Unimate robot was
installed in a factory of General Motors. It started the era of industrial robots. To-
day, over one million industrial robots are operational worldwide, in many di�erent
industries.

Historically, one of the prime reasons for the introduction of robots in industrial
applications was to remove human operators from potentially hazardous work en-
vironments. Paradoxically, the robots themselves also pose a threat to workers.
The design and control of industrial robots are optimized for performance, which
provides them with a high speed of execution, high accuracy and high repeatabil-
ity. Their high weight, high speeds, sti� characteristics and high gain control make
them dangerous if a collision with a human should occur. For this reason, people
are not allowed in the vicinity of a robot while it is working.

Over the last few years, the evolution in new and envisaged robotic applications
requires increasingly closer contact between humans and robots. The growing in-
terest in robots that operate in the close vicinity of people, or even physically
interact with them, is witnessed by the number of European projects active in
the �eld (e.g. PHRIENDS and URUS in FP6, and VIACTORS, ROBOT@CWE,
CHRIS and DEXMART in FP7). This trend is even stronger in Japan. The spec-
trum of possible applications includes rehabilitation robots (to help people re-learn
motor skills they've lost in an accident or due to stroke, for instance), robotic pros-
theses, robot assistants for helping the elderly, manufacturing (with human-robot
collaboration), entertainment robots, wearable robots, etc.

The requirements for the new generation of robots are fundamentally di�erent.
Unlike industrial robots, they will function in unstructured environments, and have
only partial knowledge of their surroundings. Since contact between the robot and

1



2 CHAPTER 1

objects or people surrounding it is possible, safety is the most important require-
ment.

Making robots su�ciently safe and dependable to be suitable for physical human-
robot interaction is a challenge. It requires the combination of lightweight materi-
als, new actuators, soft-robotics features and adapted control strategies.

1.2 Compliance

Most robots available today use non-backdriveable actuators such as geared electric
motors (with high gear ratio) and hydraulic actuators. This causes the robot to
appear sti� if it comes into contact with the environment or a person. High sti�ness
can lead to high contact forces, especially in combination with high gain control.
This is undesirable and possibly dangerous for robots that operate in close contact
with humans. Human friendly robots have to be �soft�, they need to be compliant.

Compliance can be obtained by means of design, which is called passive compli-
ance, or by means of control, which is called active compliance.

In active compliance, an inherently sti� robot is made to appear compliant in case
of contact with the environment. This can be achieved with a form of impedance
control (Hogan, 1985), for instance. The drawback of active compliance is that its
response is limited by the actuator, sensor and control bandwidth. Thus, it is not
guaranteed that it will be able to respond fast enough in case of a collision, which
is not optimal from the viewpoint of safety.

By introducing compliant (or �exible) elements in the robot's structure, we obtain
passive compliance. Passive compliance, or �hardware� compliance, is inherent to
the mechanism, it doesn't depend on control. This allows the robot to naturally
handle impacts and disturbances, without the need for any control action. The
disadvantage of passive compliance is that it makes the robot more di�cult to
control, which generally translates into lower speed and accuracy.

We see that safety and performance are competing features. When designing for
performance, it is di�cult to be safe (due to the limitations of active compliance),
and when designing for safety (i.e. lightweight and with passive compliance) it is
di�cult to achieve high control performance. Finding the optimal balance between
safety and performance remains an open challenge in robotics.

1.3 Compliant actuators

A common way to make a robot passively compliant is to use compliant actuators.
The most well known compliant actuator is probably the series elastic actuators
(SEA, Pratt and Williamson (1995)), which consists of a spring in series with a
(geared) electric motor. Since the spring constant is �xed, the compliance of SEAs
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cannot be changed during operation1. For reasons of safety (Bicchi and Tonietti,
2004), energy e�ciency (Vanderborght et al., 2006b, 2008b) or functionality (Van
Ham et al., 2007), one often wishes the compliance to be adaptable. An overview
of the di�erent types of actuators with adaptable compliance is given in Van Ham
et al. (2009)

Pneumatic arti�cial muscles (PAMs), which will be introduced more formally in
section 2.2, are contractile devices operated by pressurized air. When in�ated, they
bulge, shorten and thereby generate a contraction force.

A PAM can be considered equivalent to a pneumatic cylinder with a varying piston
area. The compressibility of air, combined with the change in e�ective piston area,
make the PAM a compliant actuator. When used in an antagonistic setup, a pair
of PAMs allows both position and compliance to be controlled. Since the PAM is
also a very lightweight device, it is a good candidate to be used as a �soft� actuator
in a human friendly robot. The pleated pneumatic arti�cial muscle (PPAM), a
speci�c type of PAM developed by Daerden (1999) is the compliant actuator used
in this work.

1.4 Goal

It is commonly accepted that �making a heavy, rigid robot behave gently and safely
is an almost hopeless task, if realistic conditions are taken into account� (Bicchi
et al., 2008). In other words, adding active compliance to a standard robot is not
enough to obtain a safe system.

The situation is not as clear for robots that have been designed with safety in
mind, however. Low weight and passive compliance are the most cited design
factors that contribute to the safety of a robot, but it is not clear if they are
su�cient. Lightweight, passively compliant robots could be safe given that their
compliance is high enough, but it isn't sure.

The goal of this dissertation is to make a contribution to closing the gap between
safety and performance by developing a controller that combines good tracking
performance with a high degree of safety for a passively compliant system. Safety
is considered in the control design itself. Thus, it is not left to the hardware to
(hopefully) take care of safety by itself, but the controller actively contributes to
it.

Since control of highly compliant systems is challenging, it was important to verify
that the approach actually works. For this reason, a lightweight two degree-of-
freedom planar manipulator actuated by pleated pneumatic arti�cial muscles was
built (see �g. 2.13 on page 28) to serve as a test platform. The main results of

1Compliance of a series elastic actuator can be modi�ed by means of control (see for instance
Vallery et al. (2008)), but due to limited control bandwidth the real (i.e. passive) compliance will
be felt in case of a sudden impact.
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this work are not speci�c to pneumatic muscles, however, and can be generalized
to other compliant actuators.

Having a safety-oriented controller gives us the possibility to compare performance
with a standard controller, and to evaluate if the �safe� controller actually improves
safety, and how much. In the process, we can also determine whether the hardware
safety features are su�cient by themselves to guarantee an acceptable level of safety,
or not.

1.5 Overview

The text is organised in two parts. Part I describes the design and modeling of the
pneumatic manipulator:

Design and Instrumentation Chapter 2 gives an introduction to the pleated
pneumatic arti�cial muscle (PPAM), describes its properties, and details the
design of the 2-DOF manipulator actuated by PPAMs.

Modeling Chapter 3 describes how the mechanical system, the pneumatic servo
valves and the muscles were modeled, and how the parameters in the models
were determined. It also describes a hysteresis model for the PPAM.

Part II starts with an overview of previous work on control of pneumatic muscle
systems. It continues with the description of the di�erent controllers that were
implemented, and includes a discussion about safety.

Sliding Mode Control Chapter 4 explains why sliding mode control was inves-
tigated, how it was implemented and how it performed.

Proxy-Based Sliding Mode Control In spite of its name proxy-based sliding
mode control (PSMC) is quite di�erent from ordinary sliding mode control.
Chapter 5 explains PSMC and investigates its properties. Two versions of
PSMC are implemented on the manipulator, and their performance is com-
pared to that of PID (proportional-integral-derivative) control.
An interactive mode that uses admittance control and PSMC is also de-
scribed. It is based on the estimation of external force acting on the end-
e�ector. Two di�erent methods to do this are explained.

Safety After a brief overview of safety in robotics, chapter 6 describes the impact
simulations that were done to assess the safety aspects of the PSMC and PID
controllers. It also investigates the in�uence of compliance on safety.

Conclusion Chapter 7 contains the conclusions of this work.
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To avoid overloading the main text, some calculations (and in case of chapter 5 also
discussions) were put in appendices. Chapters 2, 3, 4 and 5 all have an associated
appendix, appendices A, B, C and D respectively.

An overview of the publications that have resulted from this work and from col-
laborating with colleagues on related subjects is given in appendix E.
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Chapter 2

Design and Instrumentation

2.1 Introduction

Control algorithms and safety strategies for physical human-robot interaction can-
not be developed by computer simulation alone, they have to be veri�ed experi-
mentally. In order to be able to do this, a small scale 2-DOF manipulator actuated
by Pleated Pneumatic Arti�cial Muscles (PPAMs) was designed and built.

This chapter starts with an overview of the most important properties of the
PPAM actuator, and continues to describe how the manipulator was designed. The
design process will be seen to be heavily in�uenced by the fact that the muscle's
output force changes as it contracts. Along the way, concepts that will be used in
later chapters, such as torque functions, are introduced.

The last part of the chapter discusses the valves, sensors and electronics that were
used, with an emphasis on how angular velocity is measured.

2.2 Pleated pneumatic arti�cial muscle

2.2.1 Introduction

A pneumatic arti�cial muscle (PAM), also called a �uidic muscle, an air muscle or
pneumatic muscle actuator, is a contractile linear actuator operated by gas pres-
sure. Its core element is a reinforced closed membrane that expands radially and
contracts axially when in�ated with pressurized air. Hereby the muscle generates
a uni-directional pulling force along the longitudinal axis.

Over the years, di�erent types have been developed. Daerden and Lefeber (2002)
classi�ed the pneumatic muscles under Braided muscles (this category contains the
McKibben muscle and the Sleeved Bladder Muscle), Pleated PAMs, Netted Muscles
(Yarlott Muscle, RObotic Muscle Actuator, Kukolj Muscle) and Embedded Muscles

9
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(Morin Muscle, Baldwin Muscle, UnderPressure Arti�cial Muscle, Paynter Knitted
Muscle, Paynter Hyperboloid Muscle, Kleinwachter torsion device).

The McKibben muscle (Schulte, 1961; Caldwell et al., 1995; Chou and Hannaford,
1996) is the most well known type, and it is commercially available from di�erent
companies (Shadow Robot Company, Merlin Systems Corporation, Hitachi Medical
Corporation and Festo). It consists of a rubber tube, which expands when in�ated,
surrounded by a netting that transfers tension.

Although relatively easy to make, the McKibben muscle has some important draw-
backs: moderate capacity of contraction (limited to 20% to 30% of its initial length),
hysteresis as a result of friction between the outer sleeve and the rubber tube, and
the presence of a threshold pressure, under which no contraction occurs.

Daerden (1999) developed a new PAM, the Pleated Pneumatic Arti�cial Muscle
(PPAM, Daerden and Lefeber (2001, 2002)), to remedy some of these disadvan-
tages. The PPAM has a folded membrane that unfolds as it expands. Because of
the unfolding, there is virtually no threshold pressure and there is a strong reduc-
tion in energy losses in comparison to other muscle types. It can develop higher
forces and it can reach higher levels of contraction (up to 40% of the muscle's max-
imum length). Verrelst et al. (2006a) have developed a second generation of the
PPAM to extend the muscle lifespan and to simplify the construction process of
the muscles.

Since it can contract more along its longitudinal axis than a McKibben muscle,
the PPAM expands more radially as well, which is a disadvantage. This also makes
it more di�cult to group several PPAMs in a bundle, which is sometimes done with
McKibben muscles (see for instance Ritter et al. (2005)), or to twist the PPAM
around something. The main disadvantage of the PPAM is that it is not commer-
cially available. It has to be produced manually and it is rather di�cult to produce,
which leads to variations in quality and durability. The PPAM's membrane also
has to be shielded from sharp objects, as it is easily pierced.

Figure 2.1 shows three di�erent states of contraction of a (second generation)
PPAM. The membrane, shown in black on the picture, is made of a �exible, woven
polyester fabric, made airtight by a polymer liner. Each pleat contains a strand of
high modulus Kevlar® �bre (para-aramid synthetic �bre), shown in yellow in the
photo. As the pressure inside the device is increased, the pleats in the membrane
unfold and it expands radially. The Kevlar® �bre strands in the pleats, which are
being pushed away from the muscle's longitudinal axis by the expanding membrane,
translate this radial expansion into a longitudinal contraction.

2.2.2 Force characteristic

When neglecting the work needed to deform the membrane's material (very low for
a PPAM due to its pleated structure) and the force needed to overcome the inertia
of the muscle's moving parts (generally very low as well), the force generated by a
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Figure 2.1: A second generation Pleated Pneumatic Arti�cial Muscle (PPAM)
shown in three di�erent values of contraction.

pneumatic arti�cial muscle can be written as (Daerden, 1999)

F = −pdV
dl
. (2.1)

In this expression, p is the gauge pressure inside the muscle, dV the in�nitesimal
change of the muscle volume (the volume enclosed by the membrane), and dl the
change in actuator length (generally negative (indicating contraction) for a PPAM).

The volume of the actuator increases with decreasing length until a maximum
volume is reached. At this point, which corresponds to maximum contraction, the
force becomes zero. At low contraction the forces can be very high.

The fact that the force changes as a function of contraction is an essential di�er-
ence between the pneumatic muscle and the pneumatic cylinder. The force gener-
ated by a pneumatic cylinder at gauge pressure p is proportional to the piston area
inside the device. Since the piston area is constant, the force doesn't change with
piston position. A pneumatic muscle can be considered as a pneumatic cylinder
with varying piston area (equal to −dVdl ).
Based on the work of Daerden and Lefeber (2001), Verrelst et al. (2006a) have
developed a detailed mathematical model for the PPAM. The model describes
the shape of the muscle as a function of contraction, and it provides essential
characteristics such as muscle force and enclosed volume. Static load tests have
con�rmed its validity.

Under the assumption of negligible elastic deformation the static force exerted by
the PPAM muscle (i.e. eq. (2.1) written speci�cally for the PPAM) is given by the
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Figure 2.2: ft0 (dimensionless force function) as a function of contraction for dif-
ferent values of the slenderness l0/R, and with N = 25 �bres.

model as

F = pl20ft0

(
ε,
l0
R
,N

)
, (2.2)

In this expression, p is the applied gauge pressure, l0 is the muscle's uncontracted
length (or maximum length), R is its radius in uncontracted state (or minimum
radius), N is the number of Kevlar® �bre strands in the membrane and ε is the
muscle contraction. If we call l the muscle length, we have

ε =
l0 − l
l0

= 1− l

l0
.

ft0 is a nonlinear, dimensionless function that depends on contraction, the number
of �bre strands and on the muscle's geometry as represented by the design-time
parameter l0/R (called the slenderness). ft0 is shown in �gure 2.2 for di�erent
values of l0/R. As expected, �gure 2.2 and equation (2.2) show there is a varying
force-displacement relation at constant gauge pressure, with high forces being gen-
erated at low contractions and very low forces at high contractions. This can be
seen in �gure 2.3 for a muscle with slenderness l0/R = 6, l0 = 6 cm and N = 25.
In the original model by Daerden and Lefeber (2001), the membrane was assumed
to consist entirely of Kevlar®, which corresponds to taking the number of �bres
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Figure 2.3: Force exerted by a PPAM with l0/R = 6, l0 = 6 cm and N = 25 for
di�erent gauge pressures (1 bar equals 100 kPa).

N equal to in�nity in (2.2). The modi�cation by Verrelst et al. (2006a) to include
the e�ect of a limited number of �bres is only important if the number of �bres is
very low. If N is higher than 15, the di�erence between both models is less than
3%, and even smaller for higher N . Because of this, the dependence of ft0 on N is
usually not explicitly written, i.e. we write ft0 (ε, l0/R).
In practice, the dimensionless function ft0 is di�cult to work with since it is not
available in analytical form. In order to evaluate it for given ε, l0/R and N , a
system of equations involving elliptic integrals has to be solved numerically (see
Daerden and Lefeber (2001); Verrelst et al. (2006a)). Another problem is that
the radius R is usually not accurately known, and varies slightly between di�erent
muscles. For these reasons, the full mathematical model is usually only used during
the design phase of a system that involves PPAMs. Once the slenderness is known,
ft0 is approximated by a function of the following form (Verrelst et al., 2006a):

ft0 (ε) ≈ f0ε
−1 + f1 + f2ε+ f3ε

2 + f4ε
3. (2.3)

The coe�cients f0 . . . f4 are determined by �tting (2.3) to the theoretical ft0 or to
measured data.

Since low contractions correspond to very high forces (see �g. 2.3), contraction
should be kept above a certain minimum (chosen to be 5% in this work) in order
to avoid excessive material loading. For the same reason, and in order to ensure
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su�cient lifespan for the actuators, gauge pressures have to be limited. Although
in this work a limit of 3 bar (or 300 kPa) is chosen, the PPAM can generally
withstand pressures of up to 4 bar (400 kPa), which is lower than the industrially
used 6 to 10 bar.

2.2.3 Volume characteristic

Since the enclosed volume of a pneumatic muscle changes with contraction, the
pressure regulating servo valves continuously have to adjust the air�ow in or out of
the muscle in order to keep the gauge pressure at the desired value. For modeling
this interaction as well as to calculate compliance, it is necessary to know the
volume of the muscle.

Assuming negligible membrane and �ber elasticity, the volume of a PPAM is given
by

V = l30v0

(
ε,
l0
R

)
(2.4)

according to the theoretical model (Daerden and Lefeber, 2001; Verrelst et al.,
2006a). v0 (ε, l0/R) is a dimensionless function that isn't available in analytical
form. Just as in the case of ft0, it is computationally very expensive to evaluate, so
once the slenderness l0/R is known, it is approximated by a polynomial (Verrelst
et al., 2006a):

v0 (ε) ≈ v0 + v1ε+ v2ε
2 + v3ε

3 + v4ε
4 + v5ε

5. (2.5)

The coe�cients v0 . . . v5 are determined by �tting (2.5) to the theoretical v0. The
enclosed volume V as given by eq. (2.4) is shown in �gure 2.4.

2.2.4 Antagonistic setup

Since PAMs are contractile devices, they can only exert force in one direction (they
can only pull, not push). In order to have a bidirectionally actuated revolute joint,
two PAMs have to be used in an antagonistic setup.

There are two simple ways to antagonistically couple pneumatic muscles to achieve
a rotating joint: using a pulley mechanism (as shown in �g. 2.5a) , or using a lever
(�g. 2.5b).

In the pulley mechanism, the radius of the lever arm is constant, equal to the
radius r of the pulley, so the torque generated by a muscle is proportional to its
puling force (see eq. (2.2)). As can be seen in �gure 2.3, the force drops very rapidly
with contraction. This means that the joint will only be able to exert useful torque
in a limited angle range.

If the muscle is coupled to the link using a lever arm, the point where the muscle is
attached to the link can be chosen in such a way that the e�ective lever arm becomes
longer with increasing contraction. This causes the nonlinear force-contraction
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Figure 2.5: Antagonistic coupling of pneumatic muscles to achieve a rotating joint.
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characteristic of the PPAM to be translated in a �atter torque-angle relation of the
joint.

Since the nonlinear characteristic of the muscle can be somewhat smoothened
when using lever arms, this option was selected.

2.3 Design

2.3.1 Introduction

Since it was chosen to use levers to realize the antagonistically actuated joint, we
have to decide on where exactly to attach the PPAMs to the links. We also have
to choose the geometry of the PPAMs we will use.

Before starting the actual design of the manipulator, initial decisions have to be
made about the number of degrees of freedom, which con�guration to use and how
large the manipulator and its workspace are going to be.

2.3.1.1 Degrees of freedom

The di�culty of designing (and controlling) systems actuated by pleated pneumatic
arti�cial muscles rises very rapidly as the number of degrees of freedom increase.
It was decided to work with two degrees of freedom, which is enough to investigate
control principles and physical human-robot interaction without adding unneces-
sary complexity.

2.3.1.2 Con�guration

Two possible link con�gurations were considered for the manipulator, elbow-up and
elbow-down. Representative shapes for their workspaces are shown in �g. 2.6 (the
speci�cs depend of course on the length of the links and the angle range of the
joints).

For testing safe interaction with people, both con�gurations would be ok. How-
ever, since the manipulator will not be equipped with a gripper or a tool, a load
cannot be rigidly attached to it. Any load we attach will thus dangle below the
end e�ector. In that case, it is unpractical if the load can collide with the second
link, which may be possible in the elbow-down con�guration. If the load is also
being manipulated by a human operator, we don't want the system to obstruct his
movements, which seems more likely in the elbow-down con�guration as well. For
these reasons, the elbow-up con�guration was chosen.
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(a) Elbow-up (b) Elbow-Down

Figure 2.6: Considered con�gurations for the 2-DOF manipulator.

2.3.1.3 Muscle placement

In most systems actuated by muscles, both arti�cial and biological, the muscles are
placed on the link before the one they actuate. This is the case in the human arm,
for instance, where the muscles in the upper arm generate the torque that drives
the lower arm. This is also the case in the antagonistic setups of �g. 2.5.

For the manipulator, it was decided not to follow this example, and to place the
muscles that actuate a link on that link itself. This way, no muscles have to be
placed on the base link, which results in a more compact system. A schematic
representation of how the muscles are placed (including the muscle numbers as
they are used in the rest of this text) can be seen in �g. 2.7.

A consequence is of course that the actuators themselves contribute to the inertia
of the link they actuate. In this case, this e�ect is very moderate because of the
low mass of the PPAMs (around 150 g).

2.3.1.4 Muscle slenderness

In order not to complicate the production of the muscles, it was decided that
all muscles used in the manipulator would have the same slenderness (l0/R) and
minimum radius R.
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Figure 2.7: Muscle placement in the manipulator.

2.3.1.5 Link length

Since the manipulator was meant to be a lab-based research setup, we didn't want
it to be too bulky. Thus the length of the links was chosen to be 30 cm, somewhat
similar to the dimensions of the human arm. Both links were chosen to be of equal
size in order to maximize the workspace.

The limited size also means that shorter, and thus weaker (see eq. (2.2)) muscles
will be used, which increases safety during experimentation (in case of controller
instability, for instance).

2.3.1.6 Workspace

The desired operating range of the joint angles was chosen to be

20◦ ≤ q1 ≤ 105◦ (2.6)

−130◦ ≤ q2 ≤ −30◦, (2.7)

which avoids singularities in the workspace (the arm would be in a singular con�g-
uration for q2 = 0◦ and q2 = 180◦). Figure 2.7 shows how the joint angles q1 and
q2 are de�ned. The resulting workspace is shown in �gure 2.8.

2.3.2 Torque calculation

Before we are able to decide on the muscle attachment point locations, we have
to calculate the e�ect they have on the torque output of each antagonistic pair of
muscles. In order to do that, consider �gure 2.9 and assume the attachment point
locations to be known.
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2.3.2.1 Torque functions

Fig. 2.9 shows that muscle 1 (see �g. 2.7 for the muscle numbers) applies its force
F1 between points A11 and A12 (using the convention that Axy indicates the point
where muscle x is attached to link y, with the immobile base link having number
1, the upper arm having number 2 and the lower arm number 3). The moment of
force this creates in the link's hinge point O is given by

MO1 = OA12 × (−F1e1)

= F1 (e1 ×OA12)

with
e1 =

OA12 −OA11

‖OA12 −OA11‖ ,

where ‖·‖ represents the euclidean norm. MO1 only has a z-component (since all
forces and location vectors are in the x− y plane), which we write as τm,1:

τm,1 = MO1,z

= MO1 · 1z
= F1 (e1 ×OA12) · 1z. (2.8)

Using eq. (2.2) to replace F1 this expression becomes

τm,1 = p1l
2
0ft0

(
ε1 (q1) ,

l0
R

)
· (e1 ×OA12) · 1z

= p1mτ1

(
ε1 (q1) ,

l0
R

)
(2.9)

with

mτ1

(
ε1 (q1) ,

l0
R

)
= l20ft0

(
ε1 (q1) ,

l0
R

)
· (e1 ×OA12) · 1z (2.10)

the so-called torque function of muscle 1. The torque functions of the other mus-
cles can be calculated similarly (where the torque exerted by muscles 3 and 4 is
calculated in point S (hinge point of the second link) instead of O).

2.3.2.2 Global contraction

Before we can evaluate (2.10) for given muscle parameters, we have to know ε1 (q1),
the contraction of muscle 1 as a function of the joint angle q1.

If we set
d1 (q1) = ‖OA12 −OA11‖ (2.11)
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the distance between muscle 1's attachment points, and

d1,max = arg max
q1,min≤q1≤q1,max

d1 (q1)

d1,min = arg min
q1,min≤q1≤q1,max

d1 (q1)

the maximum and minimum of that distance in the working area (i.e. with q1,min =
20◦ and q1,max = 105◦, see (2.6)) we see that muscle 1 has to be able to shorten
by d1,max − d1,min.

Although at this stage we don't exactly know d1,max − d1,min (since we haven't
actually chosen the attachment point locations yet), we can assume (from the
working area and link length) that it will be somewhere between 5 and 10 cm.
Since the usable contraction of a PPAM is around 30% of its maximum membrane
length l0 (the force drops too low for higher contractions), the minimum muscle
length needed to achieve 5 cm of contraction is 5/0.3 ≈ 16.7 cm. This is too long
to be practical in this application since a muscle this size blows up to too large a
diameter (same order of magnitude as its maximum length l0) as it contracts.

2.3.2.3 Series arrangement of PPAMs

This can be solved y using a series arrangement of several identical short PPAMs
(all used at the same gauge pressure). A series of n identical PPAMs exerts the
same force as a single muscle, but the total shortening is n times larger. This allows
for large contractions and relatively small diameters (when in�ated) at the same
time.

The disadvantage of this arrangement is that the maximum force that can be
produced is reduced by a factor n2 when compared to a single muscle n times as
long. This follows from equation 2.2. However, since the forces developed by a
PPAM can be very high, this needn't be a problem.

In order to calculate the contraction of an individual muscle in a series arrange-
ment of nm muscles, consider �gure 2.10. If we group the length of the connecting
rods and of the connections between the muscles under the name Lconn, if we call
the total length d and the length of a single muscle membrane Lmembr we have

d = Lconn + nmLmembr

= Lconn + nm (1− ε) l0
or

ε =
Lconn + nml0 − d

nml0
(2.12)

Eq. (2.12) gives us the contraction of a single muscle in the series arrangement.
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Figure 2.10: Series arrangement of PPAMs. The length of the connecting elements
Lconn = La + 2Lb + Lc.

For muscle 1 of the manipulator, this becomes

ε1 (q1) =
Lconn,1 + nm,1l0 − d1 (q1)

nm,1l0
, (2.13)

with nm,1 the number of muscles in muscle group 1 (the series arrangement that
we usually refer to as muscle 1), Lconn,1 the total connection length in the group,
and d1 (q1) its total length as de�ned in 2.11.

2.3.2.4 Connection length

In order to determine Lconn,1, we return to a condition mentioned in section 2.2.2:
the fact that muscle contraction has to remain above a certain minimum, ε1,min,
to avoid excessive material loading. Of course, the minimum contraction occurs at
maximum length, so (2.13) becomes

ε1,min =
Lconn,1 + nm,1l0 − d1,max

nm,1l0
,

so we have

Lconn,1 = d1,max + ε1,minnm,1l0 − nm,1l0
= d1,max − nm,1l0 (1− ε1,min) . (2.14)

The useful contraction range of a PPAM also has an upper bound: if the contrac-
tion becomes too high, the force drops so low that it is no longer useful (see �g.
2.3). We therefore also want the contraction to remain under a maximum value.
This is used to determine the connection length of the antagonistic muscle group
2. We have

ε2,max =
Lconn,2 + nm,2l0 − d2,min

nm,2l0
,
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and thus
Lconn,2 = d2,min − nm,2l0 (1− ε2,max) ,

with
d2,min = arg min

q1,min≤q1≤q1,max
d2 (q1)

and
d2 (q1) = ‖OA22 −OA21‖ .

The connection lengths for muscle groups 3 and 4 can be calculated similarly. For
both muscle pairs, the same minimum and maximum values of contraction were
used: εmin = 5% and εmax = 30%.

2.3.2.5 Torques

By substituting (2.14) in (2.13), and the result in (2.10), we can now calculate the
torque exerted by muscle 1 using eq. (2.9), for a given gauge pressure and a given
set of design parameters.

Using similar calculations, we can do the same for the other muscles. We thus
�nd the functions

τm,i = pi ·mτi (γ) (2.15)

with γ = q1 for muscles 1 and 2 and γ = q2 for muscles 3 and 4, i being the muscle's
index (see �g. 2.7) and mτi the torque function associated with that muscle (the
torque functions are calculated in more detail in appendix A.) pi (i = 1 . . . 4) is the
gauge pressure in muscle i. Equation (2.15) provides a clear separation between the
two factors that determine torque: gauge pressure and a torque function mτi (γ),
that depends on the design parameters (i.e. attachment point locations and muscle-
related parameters) and on the joint angles.

The torque exerted by the actuators of the �rst link (muscles 1 and 2) is given by

τ1 = τm,1 (p1, q1) + τm,2 (p2, q1) ,

the torque exerted by the actuators of the second link (muscles 3 and 4) by

τ2 = τm,3 (p3, q2) + τm,3 (p4, q2) .

The total actuator torque (in both joints) can thus be represented by

τ =
[
τ1
τ2

]
=
[
τm,1 + τm,2
τm,3 + τm,4

]
(2.16)

=
[
p1 ·mτ1 (q1) + p2 ·mτ2 (q1)
p3 ·mτ3 (q2) + p4 ·mτ4 (q2)

]
. (2.17)
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For a given set of gauge pressures and design parameters, this equation allows us
to calculate the actuator torque in both joints.

Eq. (2.17) illustrates a very important property of the manipulator (and in gen-
eral of devices powered by pneumatic muscles): the torque available through the
actuators doesn't just depend on the input (gauge pressures), but also on the con-
�guration (angles q1 and q2). Consequently, the maximum torque the actuators
can deliver is di�erent in each point of the workspace.

2.3.2.6 Compliance

Eq. (2.17) allows us to calculate the sti�ness (and thus also its inverse, the com-
pliance) of both joints. When considering the �rst joint, for example, we can write
its sti�ness as

K1 = −dτ1
dq1

= −dp1

dq1
mτ1 − p1

dmτ1

dq1
− dp2

dq1
mτ2 − p2

dmτ2

dq1
. (2.18)

The terms dpidq1
have to be considered, since a change in joint angle changes a muscle's

contraction, and thus its volume, which a�ects muscle pressure. An expression for
dpi
dq1

will be calculated in section 3.3.

2.3.3 Design

Since we have four PPAM groups, there are eight attachment points. The location
of each of these points can be described by two coordinates.

Each muscle group has three parameters: slenderness l0/R and maximum length l0
of the individual muscles, and the number of muscles nm in the series arrangement.
This means there are a total of 28 parameters to be determined. The chosen
parameter set has to meet two important conditions:

� producibility: not all imaginable muscles are producible (in general, the
higher the slenderness, the more di�cult to produce). In addition, attach-
ment point locations cannot be chosen too close to each other, nor too far
away from the link axis.

� absence of �space con�icts�, which is the most di�cult condition to verify.
As PPAMs are in�ated, they expand. At maximum contraction, a PPAM's
diameter is close to its maximum length. Obviously, the muscle needs space
to be able to expand.
The transmission rods that transfer the exerted muscle force to the structure
can also cause problems. It must be made sure that the rods stay clear of all
other structural elements throughout the entire operating area.
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Additionally, we would like the muscles to have a high slenderness. As �g.2.2 shows,
having a high slenderness expands the useful contraction range of the PPAM, since
it increases the maximum contraction and lowers the forces at low contraction, so
the muscle can be used at lower contractions without generating excessive force.
As mentioned above, however, muscles with high slenderness are more di�cult to
produce.

Determining the best design means �nding a global optimum in a 28-dimensional
parameter space, subject to the above described conditions (some of which have
to be veri�ed throughout the entire working area). This has proven to be compu-
tationally intractable. Therefore, the di�erent parameters were chosen manually
after extensive computer experiments. The two main criteria taken into account
when selecting the �nal parameter set were:

� ease of production (both for the muscles and the mechanical structure).

� avoiding areas in the workspace where the load carrying capability becomes
too low.

2.3.3.1 Muscle parameters

In order to keep the muscles used in the manipulator easy to produce, a slenderness
value of 6 was chosen for all muscles (i.e. l0/R = 6). To keep the muscles compact
when fully in�ated, it was necessary to use relatively short muscles: a maximum
membrane length l0 of 6 cm was chosen. This has an important in�uence on the
force output, since muscle force increase quadratically with l0 (see eq. (2.2)).

Since the top muscle groups (1 and 3) carry both the manipulator and the load,
they need the highest force output. For this reason, the number of individual
muscles nm in these muscle groups was chosen to be as high as the space available
permits: nm = 4. The higher nm the more the contraction levels of the individual
muscles are reduced. This keeps their force output high (see �g. 2.3).

In most of the workspace, the bottom muscle groups (2 and 4) don't contribute
to supporting the weight of the load or the manipulator, only to the manipulator's
sti�ness. They thus don't have to be able to exert as much force as the top muscles,
which means we can tolerate higher contractions. Therefore, these muscles were
realized using three PPAMs in series.

2.3.3.2 Attachment point locations

The chosen attachment point coordinates are summarized in table 2.1 . Please
refer to �g. 2.9 to see how the di�erent distances are de�ned.
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Coordinate Value (mm)
X11 39.0
Y11 19.3
X21 26.7
Y21 24.1
L12 315.0
d12 30.0
L22 217.5
d22 30.0
L32 334.8
d32 19.0
L42 270.0
d42 0.0
L33 285.0
d33 30.0
L43 285.0
d43 30.0

Table 2.1: Attachment point locations, as indicated on �gure 2.9.
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Figure 2.11: Torque functions mτi, expressed in Nm/bar or Nm/100kPa.

2.3.3.3 Torque characteristics

With all design parameters known, we can now evaluate the torque functions mτi

(with i the muscle number, see (2.10) for the de�nition of mτ1). They are shown
in �gure 2.11.

These torque functions, multiplied by the applied gauge pressures, fully determine
the torque delivered by the muscles, as seen in eq. (2.17).



Design and Instrumentation 27

Figure 2.12: Actual design of the manipulator (dimensions in millimeter).

Coordinate Value (mm)
LL 300.0
dL 30.0
LG1 ≈ 192
dG1 ≈ 0
LG2 ≈ 196
dG2 ≈ 2
L1 300
L2 310

Table 2.2: Dimensions as indicated on �gure 2.9.

2.3.3.4 Mechanical design

With all attachment point locations known, the �skeleton� shown in �g. 2.9 still
has to be converted to a real design. The result is shown in �g. 2.12 , and a picture
can be seen in �g. 2.13. In order to be able to make changes in the future the
design was not optimized for weight.

The value for the coordinates of point AL, where a load can be attached to the
manipulator, and for the other dimensions shown on �gure 2.9 are listed in table
2.2. Note that the coordinates of the centers of gravity of both links as listed in
the table are based only on the CAD models, so they are not very accurate.

2.3.3.5 Maximum load

We will now calculate the maximum load the manipulator can carry throughout
its workspace.
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Figure 2.13: The manipulator.

The moment of force in O due to gravity is given by

MOg = OG1 × (−m1g1y) +OG2 × (−m2g1y) +OAL × (−Mg1y) ,

and the one in S by

MSg = SG2 × (−m2g1y) + SAL × (−Mg1y) .

In these equations, m1 represents the mass of the �rst link, m2 the mass of the
second link and M the mass of a load that is assumed to be attached to the
manipulator in point AL. Estimated values for m1 and m2 are available from the
CAD model.

Both moments only have a z-component, which we call τOg and τSg respectively.
We can then write:

τG =
[
τOg
τSg

]
(2.19)

=
[

(OG1 × (−m1g1y) +OG2 × (−m2g1y) +OAL × (−Mg1y)) · 1z
(SG2 × (−m2g1y) + SAL × (−Mg1y)) · 1z

]
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If we assume the system to be in static equilibrium in a certain con�guration, we
must have (using eq. (2.16))

τ + τG = 0

or

p1 ·mτ1(q1) + p2 ·mτ2(q1) = −τOg (2.20)

p3 ·mτ3(q2) + p4 ·mτ4(q2) = −τSg (2.21)

By setting the gauge pressure in the carrying muscles to the maximum pressure
pmax (which we take to be 3 bar or 300 kPA), and in the antagonists to zero, we
can calculate the maximum load Mmax the manipulator can carry from both eq.
(2.20) and eq. (2.21). Assuming muscle 3 is a carrying muscle, for instance, eq.
(2.21) and (2.19) give

Mmax,2 =
pmax ·mτ3(q2) + (SG2 × (−m2g1y)) · 1z

(SAL × g1y) · 1z (2.22)

(see also appendix A).

Before we can calculate the actual maximum load, however, we have to determine
which muscles are carrying the weight and which muscles are not. For the �rst
joint, there is no problem: the global center of gravity is always to the right of the
hinge point O, so the top muscle (muscle 1) will always be the carrying muscle. For
the second joint, the situation is di�erent: in the lower left region of the working
area, it is possible for the joint center of gravity of the second link and the load to
be to the left of hinge point S. In that case, muscle 4 becomes the carrying muscle.
The easiest way to determine which muscle is the carrying muscle, is to assume it
is muscle 3 and calculate the maximum load M from eq. (2.22). If it is negative,
muscle 4 is the carrying muscle (a negative result indicates that muscle 3's torque
in S and the gravitational torque of link 2 and the load in S work in the same
direction, so static equilibrium can only be achieved by reversing the direction of
gravity). The region of the workspace where muscle 4 carries is shown in grey in
�gure 2.14.

Once we know the carrying muscles for a certain con�guration (a point in the
workspace), we can isolate M from eqs. (2.20) and (2.21). Both equations will
yield a certain value for the maximum load (which we call Mmax,1 and Mmax,2),
the minimum of which is of course the true maximum.

The maximum load was calculated for a closely spaced grid of points in the
working area, the results are shown in �g. 2.15. Some contour lines in �g.
2.15 have sharp angles. The reason for this is the fact that the �gure shows
Mmax = min (Mmax,1,Mmax,2), The sharp angles are caused by a switch between
the maximum load according to (2.20) and the one according to (2.21). The com-
bination of high gravitational torque and high muscle contraction (which means
low force output) is the cause for the regions with low maximum load.
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Figure 2.14: Region of the workspace where muscle 4 is the carrying muscle (shown
in grey).
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Figure 2.15: Contour plot showing the maximum load (in kg) that the manipulator
can carry throughout its workspace.
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The lowest value in the graph is just over 2 kg. This is the true maximum load
of the system, since it can be supported anywhere in the working area. Of course,
if one stays clear of the edges of the workspace the maximum load becomes much
higher.

The maximum load value of 2 kg should be compared to the manipulator's own
mass, however, which stands at around 2.5 kg, so the the system has a load to mass
ratio of around 2/2.5 or about 80%.

2.4 Instrumentation

Over the course of the project, the instrumentation of the manipulator has evolved
signi�cantly: valves, angle sensors, pressure sensors and control hardware have all
been changed. We will only describe the hardware components that are currently
in use on the manipulator.

2.4.1 Control system

All controllers except for the low-level pressure control (which is done by pressure
servo valves) are implemented using a dSpace ACE1103PX4CLP rapid control
prototyping system. The system's main component is the DS1103 PPC, a PowerPC
based controller board with real time operating system that can be programmed
using Matlab's Simulink. It has 36 16-bit ADC channels, 8 12-bit DAC channels,
6 incremental encoder interfaces and 50 digital I/O channels.

Since very fast sampling times are useless because of the slow dynamics of the
pneumatic valves, the sampling time is set to 1 ms.

2.4.2 Pressure sensors

The gauge pressures in each muscle groups is measured by a Sensortechnics
HCX005D6V di�erential pressure sensor. The pressure di�erence between the two
sensing ports of the HCX005D6V is converted to a voltage and ampli�ed to a range
of 0.5− 4.5 V by a built-in signal ampli�er.

In order to measure a muscle's gauge pressure, one sensing port is connected to
the muscle while the other is left open and thus subjected to atmospheric pressure.

Di�erential pressure sensors were used because they automatically eliminate the
in�uence of atmospheric pressure variations.
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Figure 2.16: Overview of the Kolvenbach KPS 3/4-00 (�gure taken from the valve's
datasheet).

2.4.3 Valves

The gauge pressure in the muscle groups is controlled by four Kolvenbach KPS
3/4-00 3/3-way pressure regulating servo valves. An overview of the valve is shown
in �gure 2.16.

A PID controller inside the valve controls the air�ow into or out of the muscle by
comparing the desired pressure (which is read from a voltage input) to the actual
pressure in the muscle. Since the valves use external pressure sensors, the actual
pressure is read from a voltage input as well. The pressure signal is based on the
output of the Sensortechnics HCX005D6V pressure sensors described above.

2.4.4 Force sensors

Although not strictly necessary for control, the system is equipped with force sen-
sors that measure the actuator forces. Muscle groups 1, 2 and 3 are all equipped
with a Futek L2760 thru-hole force sensor. Because of space restrictions, it wasn't
possible to use the same sensor for muscle 4. Instead, it was equipped with a Futek
L1650 (static) force sensor.

All force sensor signals are ampli�ed using Futek JM-2AD loadcell ampli�ers.

2.4.5 Encoders

2.4.5.1 Angle measurement

Joint angles are measured using two Agilent HEDM-6540#T13 incremental rotary
optical encoders. This type of encoder contains a circular disk, rigidly attached to
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Figure 2.17: Example of the output signals of an incremental optical encoder.

the link, centered on its rotational axis and perpendicular to this axis. The disk
thus rotates with the link, and can be used to measure its angular position.

The encoder disk contains a set of regularly spaced slots that pass in front of a
light source as the disk rotates. On the other side of the disk two optical detectors
measure the light that passes through the disk. As the disk rotates, the movement
of the slots causes the light to alternate between passing through the disk or being
blocked by it. The detectors thus measure light pulses, which are converted into
digital voltage pulses. By counting the pulses one can keep track of the angular
displacement of the link.

The two optical detectors are placed in such a way that their output pulse signals
are in quadrature (i.e. have a 90◦ phase di�erence). This makes it possible to see
if the angle is increasing or decreasing, by checking which signal leads the other
one. An example of the encoder signals is shown in �g. 2.17.

The HEDM-6540#T13 encoder has 2000 slots, so for each revolution there are
2000 light-dark periods. Fig. 2.17 shows that by using both signals (usually called
A and B) one can distinguish 4 di�erent phases in each period. The encoder thus
allows us to detect angle displacements of 360◦/ (4 · 2000) = 0.045◦.
By counting pulses in the A and B signals, only changes in angle can be detected,
there is no absolute reference. For this reason the encoder contains a third output,
called index: if a certain (�xed) point on the disk passes before a detector, a
single pulse is sent through the index line, which can be used as an absolute angle
reference. Since after start-up absolute angles are unknown as long as no index
pulse has been detected, an initialization procedure that makes sure the encoder
passes its index position is necessary.

2.4.5.2 Angular velocity measurement

A good angular velocity measurement is important for control. Determining angu-
lar velocity based on encoder signals isn't generally easy, however, since we have to
di�erentiate the angle signal numerically in real time (i.e. no �future� measurements
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are available). While numerical di�erentiation is well known to magnify measure-
ment errors, the fact that the angle signal is discretized in amplitude presents an
extra di�culty: theoretically, the derivative of such a function is zero, except on
points where a jump occurs (i.e. when a new pulse has been received), where the
derivative is in�nite.

Pulse counting To illustrate the problem, let's look at one of the most straight-
forward methods, pulse counting: we count the number of pulses Np during the
sampling interval Ts. If the smallest angle di�erence we can detect is called ∆q,
then our velocity estimate becomes

ωe ≈ Np · ∆q
Ts
. (2.23)

We see that the estimate is quantized: it is always an integer multiple of ∆q/Ts,
and ∆q/Ts is the smallest angular velocity we can measure (apart from zero). In
our case, we have ∆q = 0.045◦ and Ts = 1 ms, which results in ∆q/Ts ≈ 45◦/s.
The angular velocity will thus be quantized in multiples of 45◦/s, which is clearly
unacceptable (for robotic applications 45◦/s is a considerable angular velocity).

From (2.23) we see that using encoders with a higher resolution (i.e. encoders
with a smaller ∆q) will improve the situation, as can be expected. On the other
hand, increasing the sampling frequency fs = 1/Ts will make it worse. When fs
goes to in�nity, or equivalently, when Ts goes to zero, we approach the theoretical
situation: ωe = 0, except when Np 6= 0, when ωe becomes in�nite. In practice,
fs can not be taken too small (or Ts too large), however, without compromising
controller performance.

If we consider the �true� angular velocity to be given by ω = a · ∆q/Ts (with
a ∈ R+), the absolute error on the estimation is given by

δω = |ω − ωe|

=
∣∣∣∣a ·∆qTs

−Np · ∆q
Ts

∣∣∣∣
=

∆q
Ts
|a−Np| .

The relative error then becomes

µω =
|ω − ωe|

ω

=
1
a
|a−Np| .

Since |a−Np| < 1 we have

µω <
1
a
.
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The higher a, or equivalently, the higher the angular velocity (since ω = a ·∆q/Ts),
the lower the relative error. The expected angular velocities in the system are
low in terms of multiples of ∆q/Ts, which is another argument against using pulse
counting.

Pulse timing The other basic approach we can take is measuring the time ∆t
between two successive pulses. In digital implementations, however, time is always
discrete, so we can only measure t relative to a clock signal with period Tc (with
Tc ≪ Ts if we want to use the velocity signal in a control system with sampling
time Ts):

∆t ≈ NcTc,
with Nc the number of clock cycles counted in the time interval between the arrival
of two successive encoder pulses. This results in the following angular velocity
estimate:

ωe ≈ 1
Nc
· ∆q
Tc
. (2.24)

This time, the velocity also involves a �xed quantum, ∆q/Tc, but instead of being
multiplied it is divided by an integer quantity Nc. This makes ∆q/Tc the largest
angular velocity we can measure. If we write the true ω as ∆q/∆t, the velocity
error becomes

δω = |ω − ωe|

=
∣∣∣∣∆q∆t

− 1
Nc
· ∆q
Tc

∣∣∣∣
=

∆q
∆t ·NcTc |NcTc −∆t| ,

which results in the following relative error:

µω =
|ω − ωe|

ω

=
1

NcTc
|NcTc −∆t|

Since |NcTc −∆t| < Tc we get

µω <
1
Nc

. (2.25)

The higher Nc, the lower the relative error. Measuring the inter-pulse time is thus
more precise at low velocities (the lower the speed, the higher Nc). This can be
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seen more clearly by combining (2.25) and (2.24) to calculate the maximum relative
error for a given angular velocity estimate ωe:

µω < ωe · Tc∆q
. (2.26)

As Tc/∆q is �xed, we see that the relative error increases linearly with angular
velocity.

Since the pulse counting method is not applicable in our case, and since the
angular velocities in the 2-DOF manipulator will be relatively low, the pulse timing
method seems to be the best method of the two to use. The dSpace control board,
however, can't measure the time between encoder pulses. For this reason, a number
of velocity measurement algorithms that only use encoder outputs (no timing)
were investigated. Quite some papers exist on the subject, see for instance Brown
et al. (1992); Su et al. (2006); Liu et al. (2004); Lee and Song (2001); Li et al.
(2005); Janabi-Shari� et al. (2000); Bélanger (1992); Tilli and Montanari (2001)
and the references therein. None of the investigated algorithms were found to give
satisfactory results, however, mostly due to phase delays (which can adversely a�ect
control stability Brown et al. (1992)) or because they didn't cope well with sign
reversals of the velocity. Since in simulation, the pulse timing method performed
best, it was decided to add extra hardware that measures the time between encoder
pulses.

2.4.5.3 Inter-pulse time measurement board

A PIC16F876A microcontroller based board was designed to measure the time
between two successive encoder pulses. The principle of operation is the following:
rising and falling edges in the A and B signals from the encoder are detected and
trigger an interrupt. The interrupt routine records the number of clock cycles
Nc measured since the last edge, restarts the timer (taking into account the time
it has taken to reach that point in the code), presents Nc to a separate DAC-
chip (DAC712P) and has it convert it to an analog voltage. This voltage is then
periodically sampled by the control system, which uses eq. (2.24) to calculate the
corresponding angular velocity estimate.

The two available input capture pins (the pins that trigger an interrupt when
an edge occurs) posed an implementation problem, since they can only be set to
trigger an interrupt on rising or on falling edges, but not on both. As �gure 2.17
shows, it is necessary to detect the rising and falling edges in both the A and B
signals in order to distinguish the four di�erent �states� of the encoder. This would
require four input capture pins on a PIC16F876A.

Fortunately, this problem can be solved by using a digital XOR circuit, as is shown
in �g. 2.18. Any rising or falling edge in either A or B will cause an edge (rising
or falling) in A ⊕ B (with ⊕ meaning XOR). By presenting A ⊕ B to both input
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Figure 2.18: Encoder signals A and B, and the result of applying the XOR operator
to both, A⊕B.

capture pins, one con�gured for rising edges and the other one for falling edges,
we can detect all edges. Of course, it is impossible to reconstruct A and B from
A⊕B, so the current state of A and B is read by means of other digital input pins.

The knowledge of Nc alone only allows the control board to calculate the absolute
value of the angular velocity. For this reason, the inter-pulse timing board also has
a digital output that is used to communicate the sign of the velocity.

The internal clock frequency in the microcontroller is 2 MHz, so Tc = 1
2 · 10−6.

The number of clock cycles since the previous encoder pulse is stored as a 16-bit
number, which will over�ow after 216 cycles. In that case, the board will output
the maximum value of Nc, equal to 216 − 1, which implies that there is not only
an upper limit to the velocity that can be measured, but also a lower limit:

ωmin =
1

Nc,max
· ∆q
Tc
≈ 1.37◦/s.

In order to have a margin, all measured angular velocities with absolute value below
0.025 rad/s ≈ 1.43◦/s are considered to be zero by the control board.

As mentioned above, the relative error increases with angular velocity. For a given
ω determined using the inter-pulse timing board, the maximum relative error can
be calculated from (2.26) using the previously given values of Tc and ∆q. For an
angular velocity of 5 rad/s (or around 286◦/s, which is much higher than what
we expect to see during operation), this gives µω < 0.32%, and for ω = 1 rad/s
(or almost 60◦/s) we have µω < 0.06%. These levels of accuracy are surely high
enough for robot control.

If angular velocity and acceleration are low, it can take a relatively long time for
the next encoder pulse to arrive (if ω = ωmin, that time is equal to Nc,maxTc ≈ 32.8
ms, or almost 33 sample periods of the control system). This means that it also
takes a long time before the velocity that is communicated to the control system
gets updated. The signi�cant �lag� when low velocities and low accelerations are
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present does not present practical problems, because of the low acceleration: it
may take a while for the new velocity value to become available, but the new value
doesn't di�er much from the previous one.

2.4.6 Glue electronics

In order to combine all the sensors and the control electronics into one system,
some extra �glue� electronics was necessary to solve a few practical problems:

� The range of the pressure sensors is 5 bar (or 500 kPa), with an output voltage
between 0.5 V and 4.5 V. The Kolvenbach servo valves, however, expect a
pressure signal that starts at 0 V for 0 bar and that rises with 1 V per bar of
pressure. The signals from the pressure sensors �rst have to be transformed
before they are presented to the valves.

� The sensors and the valves need electrical power in order to function, but only
the encoders are powered by the dSpace control board. The multiwire cables
connected to the devices contain both signal and power lines, so a component
was needed that puts the correct voltage on the di�erent devices' supply lines,
while �routing� the signal lines to and from the dSpace control board. In case
of the pressure sensors the transformed signal had to be presented to both
the control board and the pressure regulating valves.

2.5 Summary

After introducing the Pleated Pneumatic Arti�cial Muscle (PPAM), the PPAM-
speci�c parts of how the manipulator was designed were described in detail. The
fact that muscle force varies with contraction means that the maximum available
torque of the actuators is di�erent in every point of the workspace, which compli-
cates the design process.

The instrumentation of the manipulator was discussed as well, with emphasis on
how a useful angular velocity signal was obtained from the encoder signals.



Chapter 3

Modeling

3.1 Introduction

The manipulator design presented in the previous chapter did not include any
dynamic e�ects. The maximum load calculations, for instance, assume both static
equilibrium and accurate knowledge of the muscle parameters and (some) inertial
parameters. Although useful during the design phase, these are not a realistic
assumptions. The di�erent controllers described in part II depend on either static
or dynamic models of the manipulator, the muscles and the servovalves. This
chapter introduces the various models, all of them based on approximations, that
are used in part II.

It can be expected that a better knowledge of the parameters present in these
models will lead to better control performance. Instead of relying on theoretical
values or values that were obtained using CADmodels, experiments were performed
to estimate the model parameters. The estimation procedures used for the di�erent
models are also discussed in this chapter.

Since the estimation experiments showed that hysteresis is not an unimportant
e�ect in the system, a Preisach-based hysteresis model for the PPAM is introduced
as well.

3.2 Mechanical model

The equations of motion of the arm's rigid body structure can be derived using
for instance Lagrange's equations. It is well known (see for example Spong et al.
(2006)) that they can be written as

H (q) q̈ + C (q, q̇) q̇ +G (q) = τ , (3.1)

39



40 CHAPTER 3

where q = [q1 q2]T is the vector of joint angles, H (q) is the inertia matrix, C (q, q̇)
is the centrifugal matrix (centrifugal and Coriolis forces), G (q) contains the grav-
itational torques in the joints and τ is a vector representing the actuator torques,
as given by eq. (2.17). Expressions for H (q), C (q, q̇) and G (q) are given in
appendix B.

Note that the in�uence of the varying shape and position of the actuators is
marginal and is thus not taken into account in this model. Due to the low mass of
the PPAM, this is a reasonable approximation.

Friction is not included in (3.1) either, which will be discussed in section 3.5.2.3.

3.3 Pressure dynamics

There are two main factors that in�uence the actual gauge pressure in the muscles:
the pressure regulating valves and the coupling between actuator gauge pressures
and link angles and angular velocities.

Although elaborate models of pneumatic valves exist (see for instance Sorli et al.
(2004); Falcão Carneiro and Gomes de Almeida (2006)), we will not attempt to de-
velop a full model of the electro-pneumatic pressure regulating valves. Apart from
the considerable di�culty involved in creating a detailed model (and estimating its
parameters), such a model would greatly increase the complexity of the full system
model. Its practical use would also require a lot of extra sensors (to measure for
instance inlet pressure, outlet pressure, plunger position, etc.).

Instead, we will simply approximate the valve response by a �rst order system. If p
is the pressure inside a muscle and pd is the desired pressure then the approximated
�rst order valve dynamics can be written as

ṗ = −p/T + pd/T, (3.2)

with T a time constant. Similar approximate models were used in for instance
Inoue (1987); Tondu et al. (1994); Sira-Ramírez et al. (1996); �itum and Herceg
(2008).

A change in joint angle q also changes the contractions of the muscles driving that
joint, which means their volume changes as well. The muscle volume V is thus a
function of q, i.e. V (q) (this can be seen in eq. (2.4) as well, since ε depends on
q).

If we assume closed valves and polytropic compression/expansion, the pressure in
the muscle only depends on its volume:

PV n = P0V
n
0 (3.3)

In this equation, P is the absolute pressure (equal to the sum of the atmospheric
pressure Patm and the gauge pressure p, i.e. P = Patm+p), P0 is the initial absolute
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pressure, V0 the initial volume and n the polytropic coe�cient (in the isentropic
limit we have n = 1.4 for dry air at room temperature).

From (3.3) we have

dP

dq
=

d

dq

(
P0V

n
0

V n

)

= P0V
n
0 ·

dV −n

dq

= −n · P0V
n
0 ·

1
V n+1

dV

dq

= −n · PV n · 1
V n+1

dV

dq

or (using P = Patm + p)

dp

dq
= −n (Patm + p) · 1

V (q)
· dV (q)

dq
, (3.4)

This model has been experimentally validated in (Vanderborght et al., 2008b) and
Vanderborght et al. (2006b).

Equation (3.4) leads to

ṗ =
dp

dq

dq

dt
= −n (Patm + p) · 1

V (q)
· dV (q)

dq
q̇, (3.5)

which describes the coupling between p and q and q̇.

By combining (3.2) and (3.5) we obtain the (approximated) gauge pressure dy-
namics

ṗ = − p
T

+
pd
T
− n (Patm + p) · 1

V (q)
· dV (q)

dq
q̇. (3.6)

3.3.1 ∆p - approach

A link actuated by an antagonistic pair of pneumatic arti�cial muscles has two
inputs, the gauge pressures of both muscles. Eqs. (2.17) and (2.18) show that both
torque and compliance depend on these inputs. Within certain limits, having two
inputs thus makes it possible to control torque and compliance at the same time.
In many cases, however, we are only interested in controlling torque or position.
In those cases, it is easier to have just a single input for each link (since there is
only a single output that matters).

In pneumatic muscle systems, this reduction of the number of inputs is usually
achieved by choosing an average pressure pm for both muscles of the antagonistic
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pair (Inoue, 1987). An amount of pressure ∆p is then added to pm in one muscle
(p1 = pm + ∆p), and subtracted from it in the other (p2 = pm −∆p), which leaves
the link with only one input, ∆p. Although both pm and ∆p determine torque
and compliance, the choice of pm mainly in�uences compliance while ∆p mainly
in�uences joint torque.

If we use the ∆p-approach to calculate the desired pressure pd, we can write (3.6)
for all muscles,

ṗ1 = − p1
T1

+ pm1+∆p1
T1

− n (Patm + p1) · 1
V1
· dV1
dq1

q̇1

ṗ2 = − p2
T2

+ pm1−∆p1
T2

− n (Patm + p2) · 1
V2
· dV2
dq1

q̇1

ṗ3 = − p3
T3

+ pm2+∆p2
T3

− n (Patm + p3) · 1
V3
· dV3
dq2

q̇2

ṗ4 = − p4
T4

+ pm2−∆p2
T4

− n (Patm + p4) · 1
V4
· dV4
dq2

q̇2.

(3.7)

with ∆p1 and ∆p2 (the desired values of ∆p) the control inputs for the upper and
lower arm joints, respectively, and pm1 and pm2 are the average pressures used in
both joints.

3.4 Muscle dynamics

Reynolds et al. (2003) have proposed a dynamic model for McKibben muscles, that
represents the McKibben muscle as a parallel connection of a nonlinear spring,
dashpot and contractile element. All three components have coe�cients that de-
pend on the muscle pressure, which is considered to be the model's input.

No dynamic model exists for the PPAM, but experience suggests that it reacts
very quickly to pressure changes. In practice, the pressure dynamics will almost
certainly be much slower than any dynamics of the muscle itself. For this reason, no
muscle dynamics (other than the in�uence of changes in volume on gauge pressure,
as discussed above) will be considered.

3.5 Parameter estimation

This section explains how the parameters in the above described models have been
estimated.

3.5.1 Static model

Most of the controllers described in part II only use gravity compensation in the
feedforward part, i.e. they don't use the �dynamical� termsH (q) q̈ and C (q, q̇) q̇ in
eq. (3.1). For this reason, it was initially decided to simplify the estimation problem
by considering only the statical case. This section describes how parameters of the
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muscles, the mechanical model and the valves were estimated, all assuming the
system is in static equilibrium.

3.5.1.1 Pneumatic muscles

As noted in section 2.2.2, the dimensionless function ft0 present in the muscle force
F (see (2.2)) can be approximated using a function of the following form:

ft0 (ε) ≈ f0ε
−1 + f1 + f2ε+ f3ε

2 + f4ε
3.

We will use this approximation in a model for F as a function of gauge pressure
and contraction,

F (p, ε) = pl20
(
f0ε
−1 + f1 + f2ε+ f3ε

2 + f4ε
3
)
. (3.8)

Model equation (3.8) can easily be rewritten in a form that is linear in the pa-
rameters:

F = p
(
a0ε
−1 + a1 + a2ε+ a3ε

2 + a4ε
3
)

(3.9)

=
[
pε−1 p pε pε2 pε3

]

a0

a1

a2

a3

a4

 (3.10)

= D (p, ε)a (3.11)

with aj = l20fj for j = 0 . . . 4, D (p, ε) =
[
pε−1 p pε pε2 pε3

]
and a =[

a0 a1 a2 a3 a4

]T
.

Given N measurements Fi, pi and εi of force, gauge pressure and contraction,
respectively, and by setting Di = D (pi, εi), we can combine all data into vector

F̃ =


F1

F2

...
FN


and matrix

D̃ =


D1

D2

...
DN


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and write
F̃ = D̃a.

The standard least-squares estimate of a is then given by (Eykho�, 1979)

â =
(
D̃T D̃

)−1

D̃T F̃ .

Due to noise in D̃, the estimate will not be unbiased.

Since neither eq. (2.2) nor model equation (3.8) account for the hysteresis phe-
nomenon observed in the muscle output (see Verrelst et al. (2006a) as well as section
3.6), a very good match between observation and prediction cannot be expected.

3.5.1.2 Valves

The Kolvenbach servo valves (see section 2.4.3) are supposed to set the pressure
according to the rule 1 volt = 1 bar, i.e. given an input signal voltage of x V it
should set the pressure to x bar (with 1 bar equal to 100 kPa). In reality, however,
it is not uncommon to see deviations as high as 0.1 bar in steady state.

In order to accommodate this, a very simple model was proposed,

p = v1 + v2ps (3.12)

=
[

1 ps
] [ v1

v2

]
= E (ps)v,

with p the measured pressure, ps the set-value of the pressure (or the desired
pressure), v1 and v2 the two model parameters to be estimated and E (ps) and v
de�ned by the above equation.

As above, given N measurements pi of the gauge pressure and knowledge of the
corresponding set-value ps,i, and by setting Ei = E (ps,i) we can form the vector

P̃ =


p1

p2

...
pN


and matrix

Ẽ =


E1

E2

...
EN


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to write
P̃ = Ẽv,

and estimate v using (Eykho�, 1979)

v̂ =
(
ẼT Ẽ

)−1

ẼT P̃ .

3.5.1.3 Mechanical model

Since we're considering the statical case, we only have to estimate the parameters
in G (q) of eq. (3.1). The in�uence of H (q) and C (q, q̇) can easily be excluded
by measuring only when the system is in static equilibrium, i.e. when q̇ = q̈ = 0.
In that case, (3.1) becomes

G (q) = τ . (3.13)

Since G (q) is given by

G (q) =
[
g1 (q)
g2 (q)

]
(3.14)

with (see appendix B)1

g1 (q) = g (sin(q1) dG1m1 + sin(q1 + q2) dG2m2 + cos(q1 + q2)LG2m2

+ cos(q1) (LG1m1 + L1m2))

g2 (q) = g (sin(q1 + q2) dG2m2 + cos(q1 + q2)LG2m2) ,

we see that is it possible to write it as

G (q) =
[
g (sin(q1) θ4 + sin(q1 + q2) θ3 + cos(q1 + q2) θ2 + cos(q1) θ1)

g (sin(q1 + q2) θ3 + cos(q1 + q2) θ2)

]

=
[
g cos(q1) g cos(q1 + q2) g sin(q1 + q2) g sin(q1)

0 g cos(q1 + q2) g sin(q1 + q2) 0

]
θ1

θ2

θ3

θ4


= K (q)θ (3.15)

with K and θ de�ned by the above equation and

θ1 = m1LG1 +m2L1

θ2 = m2LG2

θ3 = m2dG2

1See �g. 2.9 on page 19 to see how the various distances are de�ned.
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θ4 = m1dG1 .

G (q) is thus linear in the parameters θi, and eq. (3.13) becomes

K (q)θ = τ . (3.16)

Knowledge of q (which is known from the encoders) is enough to calculate K (q).
In principle, τ could be calculated from eq. (2.17), using measured gauge pressures.
Eq. (2.17), however, is based on the muscle model (2.2), which isn't very accurate
(it doesn't account for the hysteresis seen in the muscles, for instance, and it also
depends on the muscle slenderness l0/R, which is only approximatively known).
For this reason τ is determined based on force sensor readings, by using

τ =
[
F1 (e1 ×OA12) · 1z + F2 (e2 ×OA22) · 1z
F3 (e3 × SA33) · 1z + F4 (e4 × SA43) · 1z

]
, (3.17)

which follows from (2.16) and (A.1)-(A.4).

By measuring joint angles and muscle forces N times in many di�erent con�gura-
tions (while making sure the arm is always in static equilibrium), and calculating
the matrix Ki = K (qi) and torque τ i for each measurement i, we can form the
observation matrix K̃ by stacking all Ki in a single 2N × 4 matrix:

K̃ =


K1

K2

...
KN

 .
Similarly, we have

τ̃ =


τ 1

τ 2

...
τN

 ,
a 2N × 1 vector. Eq. (3.16) thus becomes

K̃θ = τ̃ .

Again, the least-squares estimate of θ is given by (Eykho�, 1979)

θ̂ =
(
K̃T K̃

)−1

K̃T τ̃ .
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Parameter Estimated value Units
m1LG1 +m2L1 0.5267 kg ·m

m2LG2 0.2943 kg ·m
m2dG2 0.0570 kg ·m
m1dG1 −0.0806 kg ·m

Table 3.1: Estimated parameters of the static mechanical model (cf. eq. (3.15)).

3.5.1.4 Experiment

The parameter vectors a, v and θ (of the muscle model, the valve model and the
(statical) mechanical model, respectively) were all estimated using data from the
same experiment, which started with the desired pressure for all muscles set to
1.5 bar (or 150 kPa) and the system in a state of static equilibrium (q̇ = q̈ = 0).
Each step of the experiment involved slightly and gradually changing the desired
gauge pressure in each muscle over a period of 1 second, waiting for 3 seconds to
ensure static equilibrium and then taking data for a period of 4 seconds with a
sampling frequency of 1 kHz. Data was recorded for 31 of these steps throughout
the workspace.

Values of the components of θ as estimated in the static identi�cation procedure
are shown in table 3.1. The other estimated parameter values can be found in
appendix B, section B.6.

3.5.1.5 Gravity compensation

Since the goal of the static identi�cation procedure was to obtain a usable gravity
compensation, the quality of the gravity compensation obtained will be used to
judge the quality of the estimated parameters.

For gravity compensation, we have to calculate the actuator gauge pressures nec-
essary to have static equilibrium in a certain position (represented by angle vector
q). By assuming static equilibrium and combining the ∆p-approach (see section
3.3.1) with eq. (2.17), we have

G (q) =
[
p1 ·mτ1 (q1) + p2 ·mτ2 (q1)
p3 ·mτ3 (q2) + p4 ·mτ4 (q2)

]

=
[
pm (mτ1 (q1) +mτ2 (q1)) + ∆p1 (mτ1 (q1)−mτ2 (q1))
pm (mτ3 (q2) +mτ4 (q2)) + ∆p2 (mτ3 (q2)−mτ4 (q2))

]
,

or (using (3.14))

∆p1,gc =
g1 (q)− pm (mτ1 (q1) +mτ2 (q1))

mτ1 (q1)−mτ2 (q1)
(3.18)
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∆p2,gc =
g2 (q)− pm (mτ3 (q2) +mτ4 (q2))

mτ3 (q2)−mτ4 (q2)
. (3.19)

The terms g1 (q) and g2 (q) can be calculated from eq. (3.15) using the estimated
parameters θ̂: [

g1 (q)
g2 (q)

]
= K (q) θ̂.

The torque functions mτi in (3.18)-(3.19) can also be expressed as a function of
the estimated parameters of the muscle model, provided their de�nition is slightly
changed to use (3.8) instead of (2.2). The modi�ed de�nition is given in section
B.2 of appendix B.

Given the desired gauge pressures for gravity compensation, the set-value neces-
sary to achieve this pressure is calculated from (3.12) for all valves.

3.5.1.6 Validation

In order to test the estimated parameters using the above described gravity com-
pensation, the desired values for q1 and q2 were varied in steps following a sawtooth
pattern. After each (gradual) change in desired angles, a 3 second pause was taken
to make sure the system was in static equilibrium, and then data was taken during
1 second.

The desired and measured joint angles for this experiment are shown in �g. 3.1.
The root mean square angle errors in this validation experiment were 2.47◦ for q1,
and 2.06◦ for q2.

Fig. 3.1 clearly shows that for increasing joint angles, the measured angle is
generally less than the desired angle, and for decreasing angles the reverse is true.
A similar e�ect is present in the forces, as can be seen in �g. 3.2, which shows the
forces measured in the muscles that drive the second link, as well as the forces that
were expected based on pressure measurements and on the estimated parameters
(calculated using eq. (3.9)).

By comparing the two �gures (which share the same scale on the horizontal axis),
it can be seen that when q2 is increased in steps, force F3 is lower than what was
expected, while F4 is higher. An increase in q2 means an increase in contraction for
muscle 3 (the muscle shortens), and a decrease in contraction for muscle 4 (it gets
longer). Thus, if contraction increases, the output force is lower than predicted by
the model, while as contraction decreases it is higher. The same e�ect exists for
the muscles in joint 1.
This strongly suggests that hysteresis in the force-contraction characteristic of the
muscle (which is not included in the model) is the underlying cause for the e�ect
seen in the angles, with the model providing an �average� expected force, too high
when contraction is increased and too low when it is decreased. When an angle
is increased, the top muscle exerts less force than predicted, while its antagonist
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Figure 3.1: Comparison between measured and desired angles during the gravity
compensation experiment. Please note that the horizontal axis doesn't represent
true time, since samples were only taken at speci�c times during the experiment.

exerts more force. Both e�ects add up in the torque, which is lower than predicted,
causing the joint's angle to be lower than the desired value.

Hysteresis is further discussed in section 3.6.

In order to check if bias in the muscle parameter estimation doesn't somehow
aggravate the e�ect, the muscle identi�cation was redone with the instrumental
variables method (Eykho�, 1979). The expected pressure in the muscles accord-
ing to (3.12) (which should be unbiased and provides an excellent match between
measurement and prediction) was used for the instrumental variables. The forces
predicted by the model hardly changed using the new estimates, however (less than
0.01 % change).

Although not very accurate, the gravity compensation was used as a feedforward
term in control with good results, as described in chapter 5.

3.5.2 Dynamical case

As said in section 3.4, no dynamic muscle model will be considered. The parameters
identi�ed statically will be considered to hold in the dynamical case as well.

The model for the pressure dynamics (3.7) introduced in section 3.3 depends on
the valve time constants Ti (with i = 1 . . . 4) and on the muscle volume functions Vi,
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Figure 3.2: Comparison between measured and expected forces in the muscles of
link 2 during the gravity compensation experiment. Please note that the horizontal
axis doesn't represent true time, since samples were only taken at speci�c times
during the experiment.

as de�ned in (2.4). Since muscle volume is very di�cult to measure, the theoretical
volume functions were used.

The valve time constants were determined by hooking up the valve to a closed
volume and measuring the rise time of the response when applying an input step
of 1 bar. With tr the rise time, the time constant is then given by T = tr/ ln 9.
The rest of this section is devoted to estimating the parameters of the mechanical
model.

3.5.2.1 Introduction

In order to estimate the forces acting on the system (see section 5.4.2), it is also
necessary to know the matrices H (q) and C (q, q̇) that appear in (3.1). As is well
known, (3.1) can be written in a form that is linear in the parameters (Khosla and
Kanade, 1985; An et al., 1985; Nicolò and Katende, 1983), i.e.

K (q, q̇, q̈)θ = τ . (3.20)

Both the parameter vector θ and the matrix K (q, q̇, q̈) for the dynamical case are
given in appendix B.
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3.5.2.2 Accelerations

The main di�culty in using (3.20) for parameter estimation is the presence of
the angular acceleration q̈, which can't be measured directly since the system
isn't equipped with accelerometers. The angular velocity isn't measured directly
either, but as seen in section 2.4.5 the system is equipped with pulse counting
hardware to estimate q̇ from the encoder signals, which is equivalent to numerically
di�erentiating q.

The two most often used approaches to �nd angular velocities and accelerations
for identi�cation purposes in literature are the following:

� Using bandlimited periodic excitation trajectories (see for instance Swevers
et al. (1997)), which allows the measured encoder signals to be approximated
by a �nite sum of sines and cosines. Angular velocity and acceleration can
then be calculated analytically.
This approach cannot be used for the manipulator considered here, since it
requires the excitation trajectories to be tracked with high accuracy. Systems
actuated by pneumatic muscles don't currently o�er the necessary tracking
performance to make this approach feasible.

� O�ine numerical di�erentiation of joint angle data, usually with bandpass
�ltering (Gautier, 1997; Hollerbach et al., 2008).
Since we will later also need to evaluate the equations of motion in real-time
(see section 5.4.2), it was decided not to implement this technique.

Instead, we have opted for a method that avoids the explicit calculation of q̈, as
described in Li and Slotine (1987); Slotine and Li (1991). A similar technique can
be found in Hsu et al. (1987).

The idea is to �lter both sides of eq. (3.1) using a stable and proper �lter. We
have used a �rst order �lter with transfer function

F (s) =
1

s/ω + 1
(3.21)

and impulse response
f (t) = L−1 {F (s)} = ωe−ωt. (3.22)

Since multiplication with transfer function (3.21) in the frequency domain is equiv-
alent to a convolution with the impulse response in the time domain, the �ltered
version of (3.1) is given by

t∫
0

f (t− r) {H (q) q̈ + C (q, q̇) q̇ +G (q)} dr =

t∫
0

f (t− r) τ (r) dr (3.23)
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(where we temporarily consider all time dependent quantities to depend on r in-
stead of t, and consider the dot notation to mean di�erentiation with respect to r).
The �rst term on the left-hand side can be integrated using integration by parts2:

t∫
0

f (t− r) {H (q) q̈} dr = f (t− r)H (q) q̇|t0 −
t∫

0

d

dr
{f (t− r)H (q)} q̇dr

= f (0)H (q) q̇ − f (t)H (q (0)) q̇ (0)

−
t∫

0

{
f (t− r) Ḣ (q) q̇ − ḟ (t− r)H (q) q̇

}
dr.

The angular acceleration q̈ no longer appears in this expression. If we assume the
initial angular velocity q̇ (0) to be zero, the left-hand side of (3.23) becomes (using
f (0) = ω, which follows from (3.22))

ωH (q) q̇ +

tZ
0

f (t− r)
n
C (q, q̇) q̇ + G (q)− Ḣ (q) q̇

o
dr +

tZ
0

ḟ (t− r) {H (q) q̇} dr.

(3.24)

All convolutions in this expression can be calculated by �ltering3, using transfer
function (3.21) for the �rst convolution and

F2 (s) = L
{
ḟ (t)

}
= L{−ω2e−ωt

}
= − ω2

ω + s
(3.25)

for the second convolution. Likewise, the right-hand side of (3.23) can be calculated
by �ltering with (3.21).

Since (3.24) contains terms that don't appear in the original equation (3.1), and
since di�erent �lters are applied to di�erent terms, it is clear that the previously
calculated observation matrix K (q, q̇, q̈) cannot be used in this context. Instead,
we have to express the various terms that appear in (3.24) as a (linear) function of
the parameter vector θ, i.e.

H (q) q̇ = W1 (q, q̇)θ

Ḣ (q) q̇ = W2 (q, q̇)θ
2In the formula for integration by parts,

R
udv = uv −

R
vdu, we set u = f (t− r) H (q) and

dv = q̈dr, so v = q̇ and du = d
dr
{f (t− r) H (q)} dr.

3In Matlab®, this can be done using the lsim function of the Control System Toolbox, for
example.
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C (q, q̇) q̇ +G (q) = W3 (q, q̇)θ.

The matrices W1 (q, q̇), W2 (q, q̇) and W3 (q, q̇) are de�ned in appendix B (section
B.4).

If we use the notation 〈x (t)〉F (s) to indicate the signal that results from �ltering
time signal x (t) with the �lter with transfer function F (s), the �ltered equations
of motion (3.23) can thus be written as (using (3.24))(

ωW1 (q, q̇) + 〈W3 (q, q̇)−W2 (q, q̇)〉F (s) + 〈W1 (q, q̇)〉F2(s)

)
θ = 〈τ 〉F (s) ,

with F (s) and F2 (s) de�ned by eqs. (3.21) and (3.25), respectively. By comparing
with eq. (3.20) we see that

〈K (q, q̇, q̈)〉F (s)=
(
ωW1(q, q̇)+〈W3(q, q̇)−W2(q, q̇)〉F (s)+〈W1(q, q̇)〉F2(s)

)
(3.26)

= Kf (q, q̇) , (3.27)

the advantage of the right-hand side being that it doesn't explicitly contain the
angular acceleration q̈.

It is clear that the cuto� frequency of the �rst-order �lter (3.21) will in�uence
the results. Ideally, it should be chosen higher than the highest meaningful fre-
quency component present in the measured torques, but not too high in order to
smoothen the noise on position and velocity measurements. Since the manipulator
will generally move slowly, the measured signals are expected to have only very
low frequency components. Therefore, the cuto� frequency was chosen to be 5 Hz
(which means ω = 10π rad/s).

Practical implementation As before, if N measurements are taken they have
to be combined, but the �ltering makes this process a bit more complicated. The
details are explained in appendix B, section B.5 (page 177). The �nal result is a
�ltered version of eq. (3.20):

K̃fθ = τ̃ f . (3.28)

3.5.2.3 Friction

Most industrial robots don't have joint-torque sensors, the torques are estimated by
measuring motor currents. Since joint friction typically consumes a large fraction
of the torque that the motor produces (Hollerbach et al., 2008), a friction model is
usually included in the dynamical equations (3.1), and its parameters are estimated
in the identi�cation procedure.

It is unclear if the inclusion of a friction model would be bene�cial in the case
considered here. There are no joint torque sensors, instead joint torque is calculated
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by means of muscle force sensors. Part of the muscle force is consumed by friction
in the attachment points, and since muscle force can vary greatly, so will friction.
The angular velocity of the muscle with respect to the link is generally very low,
which makes the friction characteristics more complex.

In addition, there are several air-supply tubes and cables running along the links,
which results in extra �friction� (or unmodeled disturbance torques). The motion
of the air within muscles and tubes is another possible source of friction.

It was decided to do the parameter estimation procedure both with and without
friction model and proceed with the model that gives the best results. The friction
model used consists only of Coulomb friction and viscous friction, an acceptable
simpli�cation for many robotics applications (Swevers et al., 2007), although it
might not be in this case. Its advantages are simplicity and the fact that it is linear
in the parameters.

A friction term τ f is thus added to the left-hand side of (3.1):

H (q) q̈ + C (q, q̇) q̇ +G (q) + τ f (q̇) = τ , (3.29)

with
τ f (q̇) = cT sgn (q̇) + bT q̇ (3.30)

and cT =
[
c1 c2

]
the Coulomb friction coe�cients and bT =

[
b1 b2

]
the

viscous friction coe�cients.

Of course, this in�uences the de�nition of θ (which must now include the friction
parameters) and 〈K (q, q̇, q̈)〉F (s) (as given in (3.26)). The changes are shown in
appendix B, section B.4.1 (page 176).

3.5.2.4 Excitation

Swevers et al. (1996, 1997) have introduced the use of bandlimited periodic ex-
citation trajectories to robotics. The main advantages (other than the analytical
calculation of velocities and accelerations mentioned earlier) are the possibility to
do time-domain averaging of the (noisy) torque data, and the fact that the charac-
teristics of the measurement noise can be estimated. Several derived methods exist
as well (Cala�ore et al., 2001; Park, 2006).

Most excitation trajectory generation methods available in literature target indus-
trial robots and assume that the robot is always operating under feedback control.
In the case of the pneumatic manipulator considered here, it is perfectly possible to
excite it in open loop4, however. Since the tracking control available for pneumatic
muscle systems can't track excitation trajectories closely enough (as mentioned

4In this context, we mean by �open loop� that there is no position or trajectory controller. The
built-in pressure controllers in the pneumatic servo valves (see section 2.4.3) cannot be bypassed,
however, so the muscle gauge pressures are always feedback controlled.
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above), it is logical to opt for open loop excitation. This means we don't need an
excitation trajectory, but an excitation input.

Inspired by Swevers et al. (1997), �nite Fourier series were used as excitation
signals for both links5:

∆pi =
N ′∑
k=1

(ak,i sin (kωt) + bk,i cos (kωt)) ,

with i the link number. Once transients have died out the system's response to
such an excitation is also periodic.

The number of frequency components was chosen to be 5 (N ′ = 5), and the signal
period was set to 10 seconds (ω = 2π/10).
The coe�cients ak,i and bk,i were determined by minimizing the condition num-
ber of the normalized K̃T

f K̃f matrix (Otani and Kakizaki, 1993), with K̃f de�ned
in (B.7). Since excitation inputs are used instead of trajectories, this is computa-
tionally very expensive: the full system response has to be calculated (simulated)
over a time interval of at least two full periods of the excitation signal to obtain
K̃f (when given the ak,i and bk,i). In more detail, the following has to be done for
each evaluation of the objective function during the minimization:

� Suitable initial conditions for the system simulation have to be calculated by
numerically solving the static equilibrium equations (3.13) for q (when given
∆pi). This makes sure that transients disappear relatively quickly, so only
the �rst simulated period will be a�ected by them.

� The system's response to two input signal periods (or 20 seconds) is calcu-
lated. Only the second period is used in further steps, since it isn't a�ected
by the initial transients.

� Given the 10 seconds of simulated data from the second period, the �ltered
observation matrix K̃f is calculated using (3.26) and (B.7), and the condition
number of the normalization of K̃T

f K̃f is calculated.

The minimization procedure is also subject to a number of constraints: for any
given input signal to be acceptable, the manipulator has to remain within its
workspace, and angular velocities and accelerations have to remain below certain
limits (which were chosen as |q̇i| ≤ 2 rad/s and |q̈i| ≤ 5 rad/s2). Since the system
response has to be known to evaluate the constraints, the steps given above apply
to all evaluations of the constraint function as well.

It should be noted that since the input signal optimization is simulation-based,
the procedure has to assume the inertial parameters to be known. The result from

5Due to the use of the ∆p-approach (see section 3.3.1), only one input per link is necessary.
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Figure 3.3: Inputs used to excite the system as calculated by the optimization
procedure. Results calculated with friction are shown on the left, without friction
on the right (1 bar = 100 kPa).

the optimization will be less optimal when applied to the real system, which has
di�erent inertial parameters and unmodeled dynamics.

The resulting excitation signals for the models with friction and without friction
are shown in �gure 3.3. In the following, the excitation signal calculated with the
friction model is called excitation signal 1, while the other one is called excitation
signal 2.
Both excitation signals were applied to the pneumatic arm, and 21 full periods
were measured. The data from the �rst period was then discarded (since it contains
transients), leaving us with 20 periods of data for each signal, or 200000 measure-
ments (given the sampling period Ts of 1 millisecond and the signal period of 10
seconds).

3.5.2.5 Noise

To get an idea of the measurement noise, the average value of a signal at each
timestep (calculated from the 20 samples available) was calculated. The variance
with respect to that average was then determined (at each timestep), and all vari-
ances were averaged over all timesteps. If we take a signal x (t) as an example,
and write xj [k] as the k'th sample taken from x (t) during excitation period j, the
average over the number of periods M is given by

x [k] =
1
M

M∑
j=1

xj [k].



Modeling 57

Signal σ̂2
1 σ̂2

2 Units
q1 3.46× 10−6 2.06× 10−6 rad2

q2 2.59× 10−6 6.63× 10−7 rad2

q̇1 1.63× 10−4 1.25× 10−4 rad2/s2

q̇2 2.32× 10−5 2.03× 10−5 rad2/s2

F1 0.51 0.33 N2

F2 1.02 1.15 N2

F3 0.59 0.47 N2

F4 0.45 0.43 N2

τ1 1.82× 10−3 1.77× 10−3 N2m2

τ2 1.01× 10−3 1.00× 10−3 N2m2

Table 3.2: Noise variances as estimated after application of the �rst (σ̂2
1) and second

(σ̂2
2) excitation signal. τ1 and τ2 weren't directly measured, but were calculated

from the other signals using eq. (3.17).

The sample variance is then given by

s2
x [k] =

1
M − 1

M∑
j=1

(xj [k]− x [k])2
,

which leads to the following overall variance estimate if there are Q samples per
period:

σ̂2
x =

1
Q

Q∑
k=1

s2
x[k]

=
1
Q

1
M − 1

Q∑
k=1

M∑
j=1

(xj [k]− x [k])2
.

For the data being considered here, we have Q = 10000 and M = 20.
Estimated noise variances for all important signals are shown in table 3.2.

3.5.2.6 Parameter estimates

From (3.28) , the estimated parameter vector θ̂ was calculated in two ways:

� Using the least-squares (LS) estimator (Eykho�, 1979):

θ̂LS =
(
K̃T
f K̃f

)−1

K̃T
f τ̃ f .
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Signal σ̂2
1 σ̂2

2 Units
τ1,f 5.57× 10−4 6.89× 10−4 N2m2

τ2,f 4.28× 10−5 6.24× 10−5 N2m2

Table 3.3: Noise variances of the �ltered torques as estimated after applica-
tion of the �rst (σ̂2

1) and second (σ̂2
2) excitation signal. τ1,f and τ2,f weren't

directly measured, but were calculated using eq. (3.17) and then �ltered with
(3.21).

� Using the weighted least-squares (WLS) estimator (or Markov estimator
(Eykho�, 1979)):

θ̂WLS =
(
K̃T
f Σ−1K̃f

)−1

K̃T
f Σ−1τ̃ f ,

with Σ the diagonal covariance matrix of the measured actuator torques. The
torque variances from table 3.2 can't be used, however, since they are based
on un�ltered torque measurements. The noise variances after �ltering are
given in table 3.3.

Both estimates will be biased due to noise in K̃f (which stems mainly from mea-
surement error in q̇).

Regardless of how a dataset was generated (i.e. with the excitation signal opti-
mized with friction or without), both the above estimators were used two times on
each dataset, once assuming there is friction and once assuming there is not. Both
datasets thus generated 4 di�erent parameter estimates each.

3.5.2.7 Validation

Two di�erent periodic validation signals were applied to the system, and a few
periods of data were measured. For each parameter estimate, three datasets that
can be used for validation are thus available: the two reference datasets, and the
identi�cation set that wasn't used in the estimation. All 8 estimates were checked
against all available validation datasets, so a total of 24 validations were done.

The validation was done by comparing measured torques with torques predicted by
the model. A di�culty encountered here is the fact that acceleration measurements
are not available, but are nevertheless needed for validation. Angular accelerations
were thus calculated using a procedure outlined in Pham et al. (2001); Gautier
(1997): the angular velocities were �ltered without phase shift using a non-causal
zero-phase low pass �lter (done using the Matlab® �lt�lt function), followed by
di�erentiation using central di�erences.

Results of the validation procedure are shown in table 3.4. The top row of the
table contains results obtained with both estimators using the model including
friction, the bottom row contains the results without friction.
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Friction (LS) Friction (WLS)
ES 1 ES 2

ES 1 (0.0273) 0.0551
ES 2 0.0489 (0.0247)
VS 1 0.1444 0.0842
VS 2 0.0513 0.0600

Average 0.0815 0.0664

ES 1 ES 2
ES 1 (0.0269) 0.0556
ES 2 0.0477 (0.0247)
VS 1 0.1439 0.0862
VS 2 0.0505 0.0597

Average 0.0807 0.0672

Frictionless (LS) Frictionless (WLS)
ES 1 ES 2

ES 1 (0.0512) 0.0784
ES 2 0.0694 (0.0465)
VS 1 0.1569 0.0979
VS 2 0.0639 0.0754

Average 0.0967 0.0839

ES 1 ES 2
ES 1 (0.0516) 0.0792
ES 2 0.0687 (0.0465)
VS 1 0.1574 0.0975
VS 2 0.0627 0.0750

Average 0.0963 0.0839

Table 3.4: Results of the validation procedure. All values are expressed in N2m2.

The columns of the sub-tables indicate the dataset that was used to estimate
the parameters (e.g. numbers in the columns titled �ES 1� were obtained using
parameters estimated by using excitation signal 1). The rows indicate the dataset
that was used for validation (with �VS 1� meaning validation signal 1 for instance).
The values themselves are the averages of the mean squared torque errors for both
joints. Concretely, given the mean squared torque error ei for joint i, with ei given
by

ei =
1
N

N∑
k=1

(τi [k]− τ̂i [k])2
,

with τi [k] the k'th measured torque sample, τ̂i [k] the torque prediction and N
the number of samples, then the number given in the table is equal to (e1 + e2) /2
(with units N2m2).

As an example, let's take 0.0979 N2m2, which is underlined in the table. Since
it's in the column titled �ES 2�, the parameter vector θ used to obtain this entry
was identi�ed using excitation signal 2, using the least-squares estimator and the
frictionless model (both of which are indicated in the sub-table's title). Since it
is in the �VS 1� row, validation was done with validation signal 1, which means
that 0.0979 N2m2 is the average of both joints' mean squared error between the
torque measured while applying �VS 1� and the torque predicted using θ and the
frictionless model.

The values in parentheses result from validation using the same data that was
used for the estimation (a bad idea), and are only included for completeness. The
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Parameter Estimated value Units
Including friction Without friction

m1LG1 +m2L1 0.5238 0.5275 kg ·m
m1dG1 −0.1400 −0.1415 kg ·m

IzO,1 +m2L
2
1 0.0181 0.0286 kg ·m2

m2LG2 0.3028 0.3018 kg ·m
m2dG2 0.0153 0.0175 kg ·m
IzS,2 0.0185 0.0105 kg ·m2

c1 0.0302 N ·m
c2 0.0712 N ·m
b1 0.8294 N ·m · s
b2 0.0037 N ·m · s

Table 3.5: Result of the parameter estimation procedure. The parameters esti-
mated using the model including friction were withheld, the parameters estimated
using the same excitation signal but with the model without friction are shown for
comparison. See appendix B and eq. (B.6) for the de�nition of all parameters.

averages at the bottom of the subtables were calculated without taking them into
account.

The results in the table can be used to compare the torque prediction performance
of the di�erent sets of identi�ed parameters. They show that the model that in-
cludes friction performs better. The di�erences between the ordinary-least squares
estimator and the weighted least-squares estimator are generally small. The lowest
average of all subtables is 0.0664 N2m2, which occurs when using the least squares
estimator, including friction and when performing the parameter estimation using
excitation signal 2 (which was actually optimized for the frictionless model). So
the parameter vector identi�ed this way was withheld as the best estimate. Values
of the individual components in θ are given in table 3.5.

Figures 3.4 and 3.5 give an impression of the torque prediction quality for the
�rst excitation signal (which had the lowest total error for the selected parameter
estimate) and the �rst validation signal (which had the highest error according to
table 3.4), respectively.

There is a reasonable correspondence between measurement and prediction. A
better match might be achieved by trying to include in�uences that were neglected
in the model, for example the motion of the muscles with respect to the links. This
would increase complexity, however, and some e�ects (such as the in�uence of the
air tubes (with varying pressure) running along the links) could be very di�cult to
model.
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Figure 3.4: Comparison between measured and predicted torques for excitation
signal 1.
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Figure 3.5: Comparison between measured and predicted torques for validation
signal 1.
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3.6 Hysteresis in PPAMs

Since almost all pneumatic muscle based systems use some form of feedback pres-
sure control, these systems are always equipped with pressure sensors. Theoret-
ically, the measured pressure could be used to estimate the force exerted by the
actuator (using eq. (2.2) in the case of the PPAM). In reality, however, hysteresis
is always present, which can make the estimates too inaccurate to be useful.

Chou and Hannaford (1996) report that the main cause for hysteresis in the
McKibben muscle is Coulomb friction between the braided mesh shell and the
internal bladder. Although the PPAM has a di�erent working principle, it too
displays hysteresis in the force-contraction characteristic (Verrelst et al., 2006a),
but not as much as the McKibben muscle. This hysteresis is not modeled in (2.2).

In this section, a �rst step towards the inclusion of hysteresis in the PPAM's
model is presented.

3.6.1 Experiments

Fig. 3.6 shows the experimentally obtained force-contraction characteristic of a
PPAM with 40 �bre strands. These measurements have been performed with the
muscle mounted in a tensile testing machine and the following sinusoidal force
function imposed:

F (t) = A sin (ωt) +B,

with A = 1400N , B = 750N and ω = 2π/500 rad/s. The gauge pressure was
controlled to be as constant as possible by a pneumatic servo valve. One period is
shown for each gauge pressure. The hysteresis is clearly visible.

Fig. 3.7 shows the dimensionless force function ft0, obtained from the same data
by computing the quantities Fm (t) /pm (t) l20 (see eq. (2.2)), and plotting them
against εm (t). In these expressions, Fm (t) is the measured force at time t, pm (t)
the measured pressure and εm (t) the measured contraction.

For contractions above 5 %, the hysteresis observed in the dimensionless force
function ft0 does not di�er signi�cantly between the three curves shown (the dif-
ference for contractions below 5% can be explained by the elastic behavior of the
muscle �bre strands, which is not taken into account in (2.2)). This indicates that
the hysteresis in ft0 is essentially pressure independent.

Fig. 3.8 shows the measured dimensionless force function of a PPAM with 25 �bre
strands. These measurements were taken while the muscle was �tted in the 2-DOF
arm. While the gauge pressure was kept as constant as possible by a servo valve,
the link powered by the muscle was rotated manually, and the muscle force and
contraction were measured. For easy comparison, a curve from �gure 3.7 (taken
from a muscle with 40 �bre strands) is also shown in �g. 3.8.

Once again the di�erent curves do not di�er signi�cantly, indicating independence
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Figure 3.6: Measured force-contraction curves of a PPAM with l0/R ≈ 6, l0 = 6
cm and N = 40 �bre strands for di�erent gauge pressures.
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Figure 3.7: Measured dimensionless force function of a PPAM with l0/R ≈ 6,
l0 = 6 cm and N = 40 �bre strands for di�erent gauge pressures.
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Figure 3.8: Measured dimensionless force function of a PPAM with l0/R ≈ 6,
l0 = 6 cm and N = 25 �bre strands for di�erent gauge pressures. For reference,
one curve measured for a similar muscle with N = 40 is also shown.

of gauge pressure. It is striking, however, that the hysteresis e�ect is much less
pronounced for the case N = 25 than for the case N = 40. This indicates that
friction between the Kevlar® �bre strands and the membrane may be an important
contributing factor to the hysteresis. It could also be the unfolding of the pleats,
however, or a combination of both.

Due to the lower number of �bre strands, it was expected that the dimensionless
force function for N = 25 is lower than for N = 40, but the di�erence to too
large to be consistent with the theoretical model (Verrelst et al., 2006a). Probably,
there is a di�erence in slenderness between both muscles (the exact value of the
slenderness l0/R is hard to determine since R is di�cult to measure).

Since the link rotation in the experiment was performed manually, it was impossi-
ble to achieve a constant contraction rate. Fig. 3.9 shows two measurements (with
N = 25), one where the link was moved relatively slowly (roughly 40 seconds for
the loop shown) and a second one where it was moved �ve times faster (around 8
seconds for the loop in the �gure). The two curves hardly di�er. Since the same
kind of experiment but with di�erent gauge pressures yields the same result, the
hysteresis in ft0 seems to be independent of the contraction rate.
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Figure 3.9: Measured dimensionless force function of a PPAM with l0/R ≈ 6,
l0 = 6 cm and N = 25 �bre strands for di�erent loop speeds.

3.6.2 Modeling

The experiments suggest that the hysteresis in PPAMs can by modeled by incorpo-
rating hysteresis into the dimensionless force function ft0. Since most phenomeno-
logical hysteresis models have di�culties describing hysteresis loops whose general
form resembles that of ft0 (see �g. 2.2), we cannot model the hysteresis in ft0
directly.

This can be overcome by looking at the error between the observed (hysteretic)

f
hyst
t0 and its least-squares �t f�tt0 of the form (2.3). Modeling the hysteretic muscle
force as (cf. eq. (2.2))

Fhyst = pl20f
hyst
t0 [ε]

= pl20f
�t
t0 (ε) · (1 + e [ε]) (3.31)

we get

e [ε] =
f
hyst
t0 [ε]

f�tt0 (ε)
− 1, (3.32)

the relative error between the observed hysteretic dimensionless force function and
its least-squares �t. In these equations, square brackets have been used to indicate
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Figure 3.10: Measured and approximated dimensionless force function of PPAMs
with 25 and 40 �bre strands. Both have l0/R ≈ 6 and l0 = 6 cm.

quantities that depend hysteretically on ε, i.e. that depend on the current value
of ε as well as on certain past values. Fig. 3.10 shows the measured ft0 for both
muscles (N = 40 and N = 25, both measured at p = 1.5 bar), as well as their �tted
approximations, and �g. 3.11 shows the relative error e [ε] for both cases.

The relative error e [ε] between the hysteretic curve and its approximation is no
longer dependent on the speci�c shape of the dimensionless force function, which
has been factored out (see f�tt0 (ε) in (3.31)). This means we can model e [ε] by
taking the scaled di�erence between a more conventional hysteretic loop (one that
can easily be generated by a hysteresis model) and its non-hysteretic linear approx-
imation (see �g. 3.12). It is clear that we cannot expect a perfect match, since the
exact shape of e [ε] is not fully reproducible among experiments.

3.6.3 The Preisach model

The choice of hysteresis model is not crucial, as long as the output of the model
always stays inside the major loop. We have chosen the Preisach model, since it
is well studied (Mayergoyz, 1991), intuitive, invertible under mild conditions (see
e.g. Brokate and Visintin (1989); Brokate (1989)), and because it has already
been applied to various problems outside of its original scope (see for instance
Frankowicz and Chrenowski (2006); Hu and Ben Mrad (2003); Gorbet (1997)). It
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was introduced in the 1930's by F. Preisach to model magnetic hysteresis (Preisach,
1935), and has been called the most satisfactory mathematical model of hysteresis
available (Brokate and Visintin, 1989).

The output of the Preisach model is calculated as the weighted superposition of
elementary relay hystereses γαβ [u] (see �g. 3.13). Each relay has two switching
values α and β (with α > β), so the relays can be represented by points in the
half-plane α > β. The contribution of each relay to the output of the Preisach
model is determined by a weighing function µ:

W [u] =
∫ ∫

P

µ (α, β) · γαβ [u] dαdβ.

The region P of support of µ (α, β) in the half-plane α > β is usually referred to as
the Preisach plane. In this work, we will assume this region to be bound between
the lines β = −1, β = 1 and α = 1, as shown in �g. 3.14. We will also assume that
µ (α, β) is normalized in P , i.e.

∫ ∫
P
µ (α, β) dαdβ = 1.

A point with coordinates (α, β) in P represents the elementary relay γαβ [u] with
switching values α and β. This means P can be divided in two parts, P+ and P−,
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in which the relays γαβ have outputs +1 and −1 respectively, so we have

W [u] =
∫ ∫
P+

µ (α, β) dαdβ −
∫ ∫
P−

µ (α, β) dαdβ.

The boundary between P+ and P− is a staircase line (Mayergoyz, 1991; Gorbet,
1997). To see why this is the case, consider �g. 3.15. In the top line, it is assumed
that there hasn't been any input yet, and that all elementary relays are switched
o�. Since the output of all relays is −1, the whole Preisach plane is called P−.
Now assume that the input is scaled, so it always remains between −1 and +1, and
that it starts at −1 and gradually rises to a value of 0.75. A �nal input value of
0.75 means that all elementary relays with α ≤ 0.75 have switched their outputs
+1. This is visible as the grey triangle that represents P+ on the Preisach plane.
A rising input can be thought of as a horizontal line (since constant-α lines are
horizontal) that moves upwards in the Preisach plane, switching on all relays it
encounters. The increasing number of relays that switch on causes the output of
the model to rise, as shown on the right in �g. 3.15 (second line).

As the input decreases, as seen in the third line, all relays with a value of β
higher than the input switch o�. Since lines of constant β in the Preisach plane
are vertical, a decreasing input can be thought of as a vertical line that moves to
the left in the Preisach plane, switching relays o�. Since relays are switching o�,
the output decreases.

The increasing and decreasing of the input is thus seen to create a staircase-like
separation between P+ and P− in the Preisach plane. The �memory� of the Preisach
model is encoded in the shape of this line.

The major hysteresis loop shown in �g. 3.12 is the output of the Preisach model
to one period of a sine function as input and with the normalization µ̃ (α, β) of

µ (α, β) =

{
e−(β−α−c)2−(β+α−d)2 α+ β ≤ 0
e−(β−α−c)2−(β+α+d)2 α+ β > 0

(3.33)

as weight function, where c = −0.1 and d = −1 (Zsolt, 2002).

3.6.4 Application to the PPAM

Using the above described Preisach model, we now write e [ε] form eq. (3.31) as

e [ε] = δ ·
(
W [εs]−W�t (εs)

)
,

with
− 1 ≤ εs = 2

ε

εmax
− 1 ≤ 1. (3.34)
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Figure 3.15: Input, Preisach plane and output of a Preisach hysteresis model with
µ (α, β) = 1. It is assumed that initially all elementary relays are switched o� (i.e.
have output −1).
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δ is a scaling factor. W [εs] is the output of the Preisach model and W�t (εs) is the
linear approximation obtained by �tting the two major loops generated by W [εs].
Both W [εs] and W�t (εs) are shown in �g. 3.12 for weight function µ̃ (see (3.33)).

De�nition (3.34) of εs assumes the major hysteresis loop of ft0 to be between
ε = 0 and ε = εmax, which are mapped to -1 and 1 respectively, the minimum
and maximum input values of the considered Preisach model. In what follows, the
value of εmax was chosen to be 35%.

The hysteresis model of the PPAM muscle thus becomes

Fhyst = pl20f
hyst
t0 [ε]

= pl20f
�t
t0 (ε) ·

(
1 + δ ·

(
W [εs]−W�t (εs)

))
. (3.35)

3.6.5 Results

Fig. 3.16 shows the result of the model for the muscle with 40 �bre strands using
µ̃ (cf. (3.33)). The �t f�tt0 was obtained from the measurements taken at p = 1.5
bar (also shown in the �gure), and the optimal value of δ was determined with
the least-squares method (δ ≈ 0.299). The correspondence between model and
measurement is good for 7% ≤ ε ≤ 20%, the most important region in applications.
This result is slightly misleading, however, since the muscle isn't usually used at
constant pressure.

In the following test (performed with data taken from the muscle with 25 �bre
strands), we started out the same way: ft0 was �tted from the data taken at 1.5
bar, and an optimal value for δ was estimated from this data (δ ≈ 0.139). Next, f�tt0
was calculated again, this time from all available data (taken at gauge pressures of
1 bar, 1.5 bar and 2.5 bar), while δ wasn't changed. Finally, the muscle's output
force was calculated from the hysteresis model (3.35) for the three cases. The
result is shown in �g. 3.17. Again, the most important deviations are situated
in the low ε ranges. This is due to inaccuracies both in the model and in f�tt0 ,
which isn't perfectly tuned for all gauge pressures. It is important to remark that
the forces shown in �g. 3.17 were calculated using measured pressure values, the
pressures were not assumed to be exactly equal to their desired values. Slight
pressure deviations (which always occur because of disturbances and imperfections
in the pressure regulating valves) can generate non-negligible force di�erences in
PPAMs, so they have to be taken into account.

3.6.6 Conclusion

There is a good agreement between the hysteresis model and the experiments for the
contraction range 7% ≤ ε ≤ 20% (which is the range mostly used in applications).
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Figure 3.16: The dimensionless force function fhystt0 [ε] as calculated by the hystere-
sis model. The experimentally determined values for p = 1.5 bar are also shown.
Muscle parameters were l0/R ≈ 6, l0 = 6 cm and N = 40.
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Figure 3.17: Muscle force as calculated by the hysteresis model, as well as measured
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This range may be expanded by numerically determining a better Preisach weight
function µ from experimental data.

The model is rather cumbersome to work with in practice, however, since at
startup the hysteretic state of the muscle is unkown. In order for the model to
match the output of the muscle, the muscle has to be brought to one of its extremes
in contraction. For this reason, the model will not be used in the rest of this work.

3.7 Summary

This chapter has introduced a rigid body model for the mechanical structure of
the arm, and an approximate model for the pressure dynamics in the muscle-valve
system.

Since gravity compensation will be necessary for controlling the manipulator, the
parameters of the system were �rst estimated in static conditions. The estimates
enabled a usable gravity compensation, although hysteresis in the muscle's force-
contraction characteristic was seen to cause signi�cant error.

The parameters of the mechanical model were also estimated in dynamic condi-
tions, using a �ltering technique to eliminate the need for angular accelerations.
The excitation signals were calculated by numerical optimization. Reasonable re-
sults were obtained, but it is clear that parts of the dynamics are not included in
the model.

In the last section, a hysteretic model of the PPAM, based on the Preisach model
for hysteresis, was introduced. Good agreement between predictions and measure-
ments was achieved in an important range of contractions.

The results from this chapter illustrate the general di�culty of obtaining accurate
models for systems actuated by pneumatic muscles. For this reason experimental
validation of control results remains very important.
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Introduction to Part II

Part II of this text is about controlling the pneumatic manipulator. Two controllers
will be considered in detail, sliding mode control and proxy-based sliding mode
control (which are quite di�erent, in spite of the similar names). Before starting
with sliding mode control in chapter 4, a very short overview of previous work is
given, and the challenges faced when controlling a pneumatic muscle system are
listed.

Previous work

After Schulte (1961) published the �rst thorough analysis of the properties of the
McKibben muscle, the �eld of pneumatic muscle research lay dormant for almost
thirty years, probably due to the di�culty to control the muscle. The paper by
Inoue (1987) (which introduced the ∆p-approach) revived interest in pneumatic
muscle actuation, and since that time many publications about pneumatic muscle
modeling and control have appeared, mainly focused on the McKibben muscle. In
this section, a brief overview of previous work in pneumatic muscle control will be
given.

Position and tracking control Most of the research in pneumatic muscle con-
trol has been focused on position and tracking control. When the systems involves
antagonistically placed muscles, these controllers invariably use some form of the
∆p-approach (see section 3.3.1) to make the number of controller outputs equal to
the number of degrees of freedom.

Conventional PID position control has often been used for pneumatic muscle sys-
tems (Caldwell et al., 1993; Tondu et al., 1994; Caldwell et al., 2001; Caldwell
and Tsagarakis, 2002; �itum and Herceg, 2008), sometimes complemented with a
feedforward term in the controller. Modi�ed versions of PID control have been
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reported in Schröder et al. (2003); Thanh and Ahn (2006b,a).

The fact that the muscle parameters are usually not very well known has led
several authors to propose adaptive controllers, as in Nouri et al. (1994); Medrano-
Cerda et al. (1995); Caldwell et al. (1995). Lilly (2003); Zhang et al. (2007) also
propose adaptive controllers for pneumatic muscle systems, but their work is purely
simulation based.

The di�culty in modeling systems actuated by pneumatic muscles has led to a lot
of controllers that use soft computing methods (i.e. neural networks, fuzzy logic,
evolutionary algorithms, ...), as reported in Hesselroth et al. (1994); van der Smagt
et al. (1996); Eskiizmirliler et al. (2001); Carbonell et al. (2001a); Balasubramanian
and Rattan (2003b); Chang and Lilly (2003); Balasubramanian and Rattan (2005);
Chang et al. (2006); Yamazaki and Yasunobu (2007).

Because of its robustness, sliding mode control has received a lot of attention
as well, mostly in simulation based studies (Sira-Ramírez et al., 1996; Cai and
Yamaura, 1996; Repperger et al., 1998; Cai and Dai, 2000; Carbonell et al., 2001b;
Cai and Dai, 2003; Lilly and Quesada, 2004; Lilly and Yang, 2005; Yang, 2006),
but experimental work has been reported as well (Nouri et al., 1994; Hamerlain,
1995; Tondu and Lopez, 2000; Chettouh et al., 2006, 2008a,b).

Computed torque or inverse dynamics control was used in Verrelst et al. (2005);
Hildebrandt et al. (2005); Vanderborght et al. (2006a); Verrelst et al. (2006b);
Vanderborght et al. (2008b,a).

Various other forms of nonlinear control have also been proposed, see Kimura
et al. (1997); Carbonell et al. (2001b); Hildebrandt et al. (2002); Aschemann and
Hofer (2006); Schindele and Aschemann (2008).

Force or torque control For rehabilitation purposes, PID-based torque con-
trol using joint torque sensors has been used in Tsagarakis and Caldwell (2003);
Caldwell and Tsagarakis (2002); Costa and Caldwell (2006).

Sardellitti et al. (2007) proposes torque control based on muscle force measure-
ments, while Schröder et al. (2003) presents a controller with inner torque loop
that's entirely model based, i.e. it doesn't use force or torque sensors.

Noritsugu and Tanaka (1997) have presented an impedance controller using a force
sensor in the tool-center point.

Compliance control Since in an antagonistic setup two muscles control a single
degree of freedom, it is possible to control compliance (the inverse of sti�ness)
in addition to position or torque. Simultaneous position and compliance control
is presented in Clapa et al. (2006); Vanderborght et al. (2008b), and adaptive
simultaneous position and compliance control in Tonietti and Bicchi (2002).
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Open loop control As already noted by Inoue (1987), pneumatic muscle systems
can be controlled without feedback, using only model-based feedforward control.
This idea has been applied in Balasubramanian and Rattan (2003a); Sugar et al.
(2007).

Challenges

In general, controlling pneumatic muscle manipulators is not straightforward. Dif-
�culties encountered when designing a controller for a system actuated by pleated
pneumatic arti�cial muscles include the following:

� The non-linear force-contraction relation of the PPAM actuator.

The force output of a pneumatic muscle isn't only a function of gauge pressure
(the control input), but also depends on the joint angle (which is part of the
system state) in a nonlinear way (see eq. (2.2)).

� Compliance of the system.

Modeling and control of robots with �exible joints of �nite and constant sti�-
ness is a well established topic (see for instance Albu-Schä�er et al. (2007);
De Luca (2000); Tomei (1991); Spong (1987)). Joint sti�ness in a joint actu-
ated by pneumatic muscles is a (usually nonlinear) function of gauge pressures
and joint angle, however, so techniques that assume constant joint sti�ness
are not applicable.

� Hysteresis in the force-contraction relation of the PPAM.

Although one of the PPAM's design goals was to have less hysteresis than
other types of pneumatic arti�cial muscles, it is still present (hysteresis was
studied in section 3.6). This makes it much more di�cult to accurately model
the muscle, and hence to predict it's force output.

� Imprecise knowledge of PPAM parameters.

It is di�cult to produce PPAM's with a well speci�ed value for the slenderness
(l0/R), and it is di�cult to measure the slenderness. Hence, the muscle
parameters are usually only approximatively known.

� Inaccurately known dynamics of the pressure regulating valves.

From the viewpoint of the controller, the pressure servo valves are essentially
black boxes with inaccurately known (and nonlinear) dynamics.

� Long pressure settling times.

Actuator gauge pressures can take a relatively long time to settle, over 100 ms
for large pressure steps (and strongly dependent on the valve characteristics).
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When the controller commands new actuator pressures, it takes a long time
(compared to the sampling period) before the desired pressure is actually
present. How long it takes exactly can depend on a lot of di�erent factors,
such as how large the pressure di�erence is, how high the supply pressure is,
if the muscle's volume is changing, etc.

� The coupling between actuator gauge pressures and link angles and angular
velocities.

Eq. (3.6) shows that there is a complex interaction between gauge pressure,
joint angle (through the muscle volume) and angular velocity. This means
that the system cannot be modeled as a cascade of a pneumatic system fol-
lowed by a mechanical system.

An accurate tracking controller has to overcome these di�culties. In this work,
tracking accuracy is not the primary concern, however, safety is more important.



Chapter 4

Sliding Mode Control

4.1 Introduction

Sliding mode control is known for its robustness, an appealing quality when con-
trolling a system that is di�cult to model. Encouraging results about applying
sliding mode control to pneumatic muscle systems have repeatedly been reported
in literature. Since it also has interesting safety features (see section 4.2.2), it was
decided to test sliding mode control for the 2-DOF pneumatic manipulator.

Initial simulations and experiments revealed that implementing sliding mode con-
trol is much harder than for instance Lilly and Yang (2005); Lilly and Quesada
(2004); Cai and Dai (2003) would lead us to believe. The reason is that these pa-
pers consider only computer simulation, without including pressure dynamics. The
interaction between controller, servo-valve and the varying volume in the muscle
is thus neglected and considered to be parasitic actuator dynamics. While this
assumption is certainly justi�able in certain cases, we believe it cannot be used
in the case of sliding mode control, where fast switching of the control input is
inherently present. Thus, it is thought to be important that the (slow) pressure
dynamics (or actuator dynamics) are considered in the control design.

Section 4.3 in this chapter describes the design of a sliding mode controller that
accounts for the pressure dynamics in the PPAMs. Since the derivation of the con-
troller is rather complicated and technical, most of the concepts used in section 4.3
are explained in section 4.2. This section introduces sliding mode control by means
of an example, and details why using sliding mode control might be advantageous
for safety. It also shows that accounting for actuator dynamics is necessary, and
that this can be done using feedback linearization.

Section 4.4 discusses some results obtained by simulation and experimentation.
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4.2 Sliding mode control

A complete introduction to sliding mode control is outside the scope of this text.
In this section, we will illustrate some of the most important concepts of sliding
mode control by means of an example. For more information, please refer to for
instance Utkin (1977); Slotine and Li (1991); Hung et al. (1993); Khalil (2002);
Perruquetti and Barbot (2002).

4.2.1 Ideal sliding mode control

As an example, suppose we want to design a sliding mode tracking controller for
the one-dimensional nonlinear mass-spring model

mz̈ = −k1z − k2z
3 + u, (4.1)

where u (an applied force) is the control input. If we set x1 = z and x2 = ż we can
write (4.1) in state-space form:

ẋ1 = x2

ẋ2 = −k1

m
x1 − k2

m
x3

1 +
1
m
u,

or equivalently

ẋ1 = x2 (4.2)

ẋ2 = b (x1) + a · u, (4.3)

with b (x1) = −k1m x1 − k2
m x

3
1 and a = 1/m.

If we write x1d = zd for the desired position and x2d = żd for the desired velocity,
we can de�ne the position and velocity errors e1 and e2 as

e1 = x1d − x1 (4.4)

e2 = x2d − x2. (4.5)

The goal of a sliding mode controller is to keep the system state x =
[
x1 x2

]T
on the so-called sliding surface, a (time-varying) line or (hyper)surface in state
space that represents desired dynamics for the system. For a second order system
such as the example considered here, it is commonly de�ned as s (x, t) = 0, with

s (x, t) = e1 + λe2 (4.6)

and λ > 0 a constant. If the state remains on the sliding surface (i.e. if s (x, t)
can be kept equal to zero), it determines the dynamics of the system. With s (x, t)
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de�ned as above, s (x, t) = 0 implies

ė1 = − 1
λ
e1

(since e2 = ė1), or
e1 = e1,0e

− 1
λ t,

with e1,0 the position error e1 at t = 0. We see that if the system state remains
on the sliding surface, the position error exponentially decays to zero. The same
holds for the velocity error, since if the value of s (x, t) remains constant (zero), we
have ṡ (x, t) = 0, or (using ė1 = e2 in eq. (4.6)) e2 + λė2 = 0, so we get

ė2 = − 1
λ
e2.

The possibility to have the states exponentially converge to their desired values
with a chosen time constant λ makes sliding mode control interesting in view of
safe control (see section 4.2.2).

Once we have chosen the sliding surface, we still have to design a controller that
makes it invariant (i.e. once on the sliding surface, the state will stay on it) and
attractive (if the state is not on the sliding surface it will move towards it). We'll
do this in two steps. First, we assume the state is on the sliding surface (i.e.
s (x, t) = 0), and ask ourselves what control action would be necessary to keep it
there. If s (x, t) has to remain zero, we have ṡ (x, t) = 0. Using (4.4) and (4.5),
ṡ (x, t) becomes

ṡ (x, t) = ė1 + λė2

= e2 + λ (ẋ2d − ẋ2) ,

or using eq. (4.3)
ṡ (x, t) = e2 + λ (ẋ2d − b (x1)− a · u) (4.7)

(the desired acceleration ẋ2d = z̈d is supposed to be known). Setting ṡ (x, t) = 0
in the above equation gives us the control input ueq necessary to keep the state on
the sliding surface once it is on it:

ueq =
1
a

(
ẋ2d − b (x1) +

e2

λ

)
.

This is called the equivalent control.

In order to make the sliding surface attractive, we add a discontinuous term to
the above control law, which gives us the sliding mode controller:

u =
1
a

(
ẋ2d − b (x1) +

e2

λ
+K sgn s

)
, (4.8)
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Figure 4.1: State-space trajectory when using sliding mode control (shown for a
second order system).

where K > 0 is a constant. If we substitute (4.8) in (4.7), we get

ṡ = −λK sgn s.

Given that λ > 0 and K > 0, this means that if s > 0, we have ṡ < 0, and if s < 0
we have ṡ > 0. This can be summarized as

ṡ · s < 0.

If s 6= 0, the controller thus ensures that s moves towards 0. Once s is equal to
zero, it remains zero.

The system behavior when under sliding mode control is illustrated in �g. 4.1. The
sliding surface is a line of slope −1/λ in state space that contains the (time varying)
desired state of the system, the point xd (t) =

[
x1d x2d

]T =
[
zd żd

]T
.

Starting from any initial condition, the state trajectory reaches the sliding surface
in �nite time during the so-called reaching phase, and then slides along the surface
while it converges exponentially to the desired state xd.

4.2.2 Safety

Fig. 4.2 shows simulations of three di�erent step responses of the nonlinear mass-
spring system when using the above designed sliding mode controller1. It is clear

1For the simulation, the following parameter values were chosen: m = 2 kg, k1 = 1 N/m,
k2 = 0.1 N/m3 and K = 5 m/s2.
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Figure 4.2: Simulated step response of the nonlinear mass-spring system when
using controller (4.8) for di�erent values of the time constant λ.

that by increasing the time constant λ, the response can easily be made slower,
and thus safer.

An increase in λ has two e�ects: it slows down the exponential convergence once
the sliding surface is reached, but it also causes the sliding surface to be reached at
lower velocities (in absolute value). This can be seen in �g. 4.3. An increase in λ
makes the sliding surface in state space less steep (since its slope is −1/λ), so for
the same initial conditions the state will reach it at a lower velocity.

Since increasing λ doesn't deteriorate tracking performance in steady state (see
�g. 4.4), sliding mode control could be a good candidate for a safe (or safer)
controller. Safety will be discussed in more detail in chapter 6.

4.2.3 Robustness

Sliding mode control law (4.8) assumes a perfect knowledge of the system to be
controlled. In reality, a and b (x1) are never known exactly, only their estimates
â > 0 and b̂ (x1) are available. In implementations, eq. (4.8) is calculated using
these estimates,

u =
1
â

(
ẋ2d − b̂ (x1) +

e2

λ
+K sgn s

)
. (4.9)
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Figure 4.3: Higher values of λ imply that the sliding surface will be reached at
lower velocities.

0 2 4 6 8 10
t (s)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

z 
(m

)

z -- λ = 0.1 s
z -- λ = 0.5 s
z -- λ = 1 s
z

d

Figure 4.4: Response of the sliding mode controlled nonlinear mass-spring system
when tracking a sinusoidal trajectory for di�erent values of the time constant λ.
Initial conditions were z = ż = 0.
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By substitution of (4.9) in (4.7), we get

ṡ (x, t) = e2 + λ
(
ẋ2d − b (x1)− a

â

(
ẋ2d − b̂ (x1) +

e2

λ
+K sgn s

))
= e2 + λ

(
ẋ2d − b (x1)− a

â
ẋ2d +

a

â
b̂ (x1)− a

â

e2

λ
− a

â
K sgn s

)
= ∆e2 + λ∆ẋ2d + λ∆b (x1)− λa

â
K sgn s,

with ∆e2 = e2 − a
âe2 = e2

(
1− a

â

)
, ∆ẋ2d = ẋ2d

(
1− a

â

)
and ∆b (x1) = a

â b̂ (x1) −
b (x1). Since a, â, λ and K are all positive, we see that if

λ
a

â
K > ∆e2 + λ∆ẋ2d + λ∆b (x1)

or

K >
â

a

(
∆e2

λ
+ ∆ẋ2d + ∆b (x1)

)
ṡ will always have the opposite sign of s, and the sliding surface will be attractive.
If the gain K is chosen high enough to �overpower� the uncertainties in the system's
parameters, the controller will still behave as desired. Sliding mode control is thus
said to be robust with respect to parametric uncertainty in the system model, which
is traditionally considered to be its main advantage (Slotine and Li, 1991).

4.2.4 Chattering

Sliding mode control is discontinuous across the sliding surface. The implementa-
tion of the control switching is always imperfect: the actuator switching is never
instantaneous, there are sensor and calculation delays, the value of s is not known
with in�nite precision, etc. This causes chattering (Slotine and Li, 1991), as illus-
trated in �g. 4.5. When the system's state trajectory reaches the sliding surface
(where ideally it should stay and start sliding), the delay in control switching causes
it to cross over to the other side. When the control switches, it reverses direction,
heads for the sliding surface but overshoots again, etc.

Chattering is highly undesirable, resulting in low control accuracy, high heat losses
in electrical circuits and high wear in mechanical parts. The fast switching can also
excite high-frequency unmodeled dynamics.

The most common way to eliminate chattering (see for instance Slotine and Li
(1991)) is to introduce a boundary layer by replacing the sign function sgn s in
(4.9) by a high slope saturation function sat (s/Γ), with

sat (y) =

{
y if |y| ≤ 1
sgn (y) if |y| > 1

(4.10)

and Γ a positive constant. The function sat (s/Γ) is shown in �g. 4.6.
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dx (t)

x2

x1

reaching
phase

s = 0
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Figure 4.5: Chattering due to delay in control switching.

Γsat(s/  )

sΓ

1

−1

Figure 4.6: Saturation function sat (s/Γ).
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Figure 4.7: Simulated response of the sliding mode controlled nonlinear mass-spring
system when tracking a sinusoidal trajectory (of frequency 2 Hz) in the presence
of unmodeled (slow) �rst order actuator dynamics with time constant 0.06 s. The
initial state was chosen to coincide with the desired initial state (i.e. the mass
starts at the desired position and with the desired velocity).

4.2.5 Actuator dynamics

If the actuator dynamics is fast with respect to the system dynamics, it can be
neglected (i.e. left unmodeled) and its e�ects countered using a boundary layer.
If the actuator dynamics can't be considered fundamentally faster than the rest
of the system, however, it has to be modeled. This is illustrated in �g. 4.7. The
simulation in �g. 4.7 included unmodeled �rst order actuator dynamics with a time
constant of 0.06 s. No boundary layer was used. By comparing with �g. 4.4, it is
clear that this hurts tracking performance.

This example illustrates that in order to use sliding mode control for pneumatic
muscle systems (which have slow actuator dynamics), a model of the actuators has
to be taken into account when designing the controller.

4.2.6 Feedback linearization

Control law (4.8) is of the form

u =
1
a

(−b (x1) + v) . (4.11)
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If we substitute (4.11) in the eq. (4.3), the governing equations (4.2) and (4.3)
become

ẋ1 = x2

ẋ2 = v.

We see that the nonlinear term b (x1) was cancelled out, and the resulting system
is linear, with input v. u can be thought of as an inner loop control, linearizing
the system, while v is the outer loop controller that controls the linearized system.
The new control input v could be designed in many ways (using linear control
techniques, for example), with v chosen to be

v = ẋ2d +
e2

λ
+K sgn s

in the case of the sliding mode controller discussed above. Since control law (4.11)
linearizes the system by means of feedback, this technique is called feedback lin-
earization2.

The idea of feedback linearization by cancelling out nonlinearities can be simply
applied to systems in the so-called controllability canonical form3. One of its
properties is a state vector that contains the system's output and its derivatives up
to order n, with n the order of the system. With state vector x =

[
x1 x2

]T =[
z ż

]T
, system (4.2)-(4.3) clearly has this property, which was repeatedly used

in the design of the sliding mode controller (for instance when stating that e2 = ė1).

If we include �rst order actuator dynamics with time constant T (similar to eq.
(3.2)) in the model, (4.2)-(4.3) becomes

ẋ1 = x2 (4.12)

ẋ2 = b (x1) + a · u (4.13)

u̇ = − u
T

+
ud
T
, (4.14)

with ud (the desired actuator force) the input of the system. It is clear from the
above equations that we cannot simply choose ud to cancel the nonlinear term

2Computed torque or inverse dynamics control (see for instance Spong et al. (2006)) is one of
the most common applications of feedback linearization in robotics.

3A SISO system is said to be in controllability canonical form (see for instance Slotine and Li
(1991), chapter 6) if its dynamics can be written as

x(n) = f (x) + b (x) u

with u the scalar control input, x the scalar output, x =
ˆ

x ẋ · · · x(n−1)
˜T

the state
vector and f (x) and b (x) possibly nonlinear functions of the state. Note that no derivatives of
the control input u are present.
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b (x1). The new state vector x =
[
x1 x2 u

]T =
[
z ż u

]T
no longer

contains only derivatives of the output z, hence the system is not in controllability
canonical form. Standard sliding mode design techniques cannot be applied straight
away.

State space representations are not unique, however. If we use the transformation
ξ = φ (x) given by

ξ1 = x1

ξ2 = x2

ξ3 = b (x1) + a · u

and with inverse x = φ−1 (ξ)

x1 = ξ1

x2 = ξ2

u =
1
a

(ξ3 − b (ξ1))

in eqs. (4.12)-(4.14) we get

ξ̇1 = x2

= ξ2

ξ̇2 = b (x1) + a · u
= ξ3

1
a

(
ξ̇3 − db (ξ1)

dξ1
ξ̇1

)
= − u

T
+
ud
T

= − 1
aT

(ξ3 − b (ξ1)) +
ud
T

or

ξ̇1 = ξ2 (4.15)

ξ̇2 = ξ3

ξ̇3 =
db (ξ1)
dξ1

ξ2 − 1
T

(ξ3 − b (ξ1)) +
a

T
ud

= b′ (ξ) + a′ · ud, (4.16)
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with b′ (ξ) = db(ξ1)
dξ1

ξ2 − 1
T (ξ3 − b (ξ1)) and a′ = a/T . This is an alternative state

space representation for (4.12)-(4.14). Nonlinearities can be cancelled by choosing

ud =
1
a′

(−b′ (ξ) + v) ,

(with v the control law for the linearized system) since this representation is in
controllability canonical form.

For more information about feedback linearization (the general case, conditions
that have to be ful�lled, etc.) please refer to for instance Sastry (1999); Slotine
and Li (1991); Khalil (2002).

A sliding mode controller for (4.15)-(4.16) can be designed by proposing the fol-
lowing sliding surface:

s (ξ, t) = ë+ α1ė+ α0e,

with e = ξ1d − ξ1 = zd − z. Since s (ξ, t) = 0 represents the desired dynamics
when on the sliding, α1 and α0 have to be chosen so that e converges to zero if
s (ξ, t) = 0. In general, this is the case if the polynomial p2 +α1p+α0 is Hurwitz4.
If we want the exponential convergence with time constant λ we had before, we can
put both roots of the polynomial at −1/λ by choosing α1 = 2/λ and α0 = 1/λ2.

Again, setting ṡ (ξ, t) = 0, with ṡ (ξ, t) given by

ṡ (ξ, t) = ξ̇3d − ξ̇3 + α1ë+ α0ė

= ξ̇3d − b′ (ξ)− a′ · ud + α1ë+ α0ė

allows us to determine the equivalent control

ueq =
1
a′

(
ξ̇3d − b′ (ξ) + α1ë+ α0ė

)
,

which we can complement with a switching term to �nd the sliding mode control
law

u =
1
a′

(
ξ̇3d − b′ (ξ) + α1ë+ α0ė+K sgn s

)
.

A tracking simulation for this controller is shown in �g. 4.8. By comparing with
�g. 4.7 we see that incorporating the actuator dynamics improves performance.

It is not without disadvantages though, since most of the robustness is lost. The
uncertainties in eq. (4.13) are what is called unmatched, since they don't act in the
input channel5 (Draºenovi¢, 1969). Feedback linearization will not be robust with

4A polynomial with real positive coe�cients and roots which are either negative or pairwise
conjugate with negative real parts.

5More precisely, they don't act in the input channel when considering state space representation
(4.12)-(4.14) (where the input is ud). After feedback linearization, i.e. in (4.15)-(4.16), the
matching conditions (Draºenovi¢, 1969) lose their meaning since they would be automatically
satis�ed (Sira-Ramírez et al., 1996).
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Figure 4.8: Simulated response of the sliding mode controlled nonlinear mass-spring
system when tracking a sinusoidal trajectory. First order actuator dynamics is
taken into account in the controller. A slight mismatch between the initial state
and the desired initial state was introduced intentionally.

respect to these uncertainties (Sastry, 1999). Only uncertainties in the actuator
dynamics, represented by eq. (4.14), are matched, and can be overcome by choosing
the switching gain K high enough.

4.2.7 Internal dynamics

Let's suppose that the actuator force u is exerted by two antagonistically placed
PPAM muscles (in a setup as shown in �g. 4.9), and that the desired pressure in
each muscle is set using the ∆p approach (see section 3.3.1). To keep the example
simple, we assume the pressure dynamics in both muscles to be �rst order (as in
eq. (3.2)), i.e. pressure variations due to volume changes as modeled in (3.5) are
ignored. Using eqs. (2.2) and (3.2), the system's equations of motion then become

ẋ1 = x2 (4.17)

ẋ2 = b (x1) + a · (p1l
2
0ft0 (ε1 (x1))− p2l

2
0ft0 (ε2 (x1))

)
(4.18)

ṗ1 = −p1

T
+
pm + ∆p

T
(4.19)



94 CHAPTER 4

p2 p1

z

Figure 4.9: Antagonistic setup of muscles to exert force on the nonlinear mass-
spring system.

ṗ2 = −p2

T
+
pm −∆p

T
. (4.20)

This is a fourth-order system with state vector x =
[
x1 x2 p1 p2

]T
. The

relative degree of the system is 3, which means that the output z = x1 has to be
di�erentiated 3 times for the input ∆p to appear (Sastry, 1999):

ẍ2 =
...
z

=
db (x1)
dx1

x2 + aṗ1l
2
0ft0 (ε1 (x1)) + ap1l

2
0

dft0 (ε1 (x1))
dx1

x2

−aṗ2l
2
0ft0 (ε2 (x1))− ap2l

2
0

dft0 (ε2 (x1))
dx1

x2

=
db (x1)
dx1

x2 + al20x2

(
p1
dft0 (ε1 (x1))

dx1
− p2

dft0 (ε2 (x1))
dx1

)

+a
(
−p1

T
+
pm + ∆p

T

)
l20ft0 (ε1 (x1))− a

(
−p2

T
+
pm −∆p

T

)
l20ft0 (ε2 (x1))

=
db (x1)
dx1

x2 + al20x2

(
p1
dft0 (ε1 (x1))

dx1
− p2

dft0 (ε2 (x1))
dx1

)
+
a

T
(pm − p1) l20ft0 (ε1 (x1))− a

T
(pm − p2) l20ft0 (ε2 (x1))

+
a

T
∆p · l20 (ft0 (ε1 (x1)) + ft0 (ε2 (x1)))

= b′′ (x) + a′′ (x) ∆p,

with b′′ (x) and a′′ (x) de�ned by the above equation. We see that the system can
be feedback linearized using a control law of the form

∆p =
1

a′′ (x)
(−b′′ (x) + v) .
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The corresponding state transformation ξ = φ (x) is given by

ξ1 = x1

ξ2 = x2

ξ3 = b (x1) + a · (p1l
2
0ft0 (ε1 (x1))− p2l

2
0ft0 (ε2 (x1))

)
and allows us to write the system as

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = b′′ + a′′∆p.

Since the original system was fourth order, an extra system state exists. In this
case, this state can be taken to be

η = p1 + p2,

with dynamics given by the sum of eqs. (4.19) and (4.20):

η̇ = − η
T

+ 2
pm
T
.

We see that the evolution of η does not depend on the input ∆p. It is called
the internal dynamics (Slotine and Li, 1991; Sastry, 1999). This division of the
system in a part where the input-output relation is linearized by feedback and
another part that is independent of the input (internal dynamics) happens when
the relative degree is less than the order.

Since the internal dynamics doesn't depend on the input, they cannot be stabi-
lized by it. Thus, it is important that the internal dynamics are stable, otherwise
feedback linearization can generally not be used.

4.3 Sliding mode control of the manipulator

4.3.1 Introduction

Most of the simulation-based work on sliding mode control of pneumatic arti�cial
muscle systems available in literature (Cai and Yamaura, 1996; Repperger et al.,
1998; Cai and Dai, 2000; Carbonell et al., 2001b; Cai and Dai, 2003; Lilly and Que-
sada, 2004; Lilly and Yang, 2005; Yang, 2006) does not consider pressure dynamics,
a notable exception being a study by Sira-Ramírez et al. (1996) (who modeled pres-
sure dynamics as a �rst order system in his simulations). Pressure dynamics is thus
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considered to be parasitic, or much faster than the dynamics of the rest of the sys-
tem, an assumption we feel is not valid in the case of sliding mode control of a
pneumatic muscle system. A sliding mode controller will generally cause switching
in the desired pressure at a much higher rate than any pressure regulating valve can
impose. As an illustration, we note that Lilly and Quesada (2004); Lilly and Yang
(2005) use the muscle model proposed by Reynolds et al. (2003) for McKibben-type
arti�cial muscles. This model was validated by subjecting it to a triangle-shaped
input pressure signal with a frequency of 0.17Hz (period ≈ 5.88 s), which most
pressure regulating valves would be able to track without any problems. Pressure
dynamics can safely be ignored at this frequency. A sliding mode controller, how-
ever, could switch the desired pressure at frequencies orders of magnitude higher,
so in this case pressure dynamics must be considered. Ignoring it will most likely
lead to an unusable controller, as was illustrated in the example discussed above
(see section 4.2.5).

In all experimental studies of sliding mode control applied to pneumatic arti�cial
muscle systems known to the author (Nouri et al., 1994; Hamerlain, 1995; Tondu
and Lopez, 2000; Chettouh et al., 2006, 2008a,b), the pressure dynamics is im-
plicitly taken into account by lumping together the valve, McKibben muscle and
inertial load connected to the muscle and modeling the whole as a linear second
order system.

In this section, we use the system model including pressure dynamics as introduced
in chapter 3. Due to the included actuator dynamics, a state transformation is
necessary to feedback linearize the system. A sliding mode tracking controller is
then designed.

4.3.2 Complete system model

From (3.1) we can write

q̈ = −H−1Cq̇ −H−1G+H−1τ

= −Aq̇ −B +H−1τ (4.21)

with A = H−1C andB = H−1G (the inverse H−1 always exists due to the positive
de�niteness of the inertia matrix H). Together with (2.17) and (3.7) we get the
full model of the system to be controlled:

q̈ = −Aq̇ −B +H−1

[
p1 ·mτ1(q1) + p2 ·mτ2(q1)
p3 ·mτ3(q2) + p4 ·mτ4(q2)

]
ṗ1 = − p1

T1
+ pm1+∆p1

T1
− n (Patm + p1) · 1

V1
· dV1
dq1

q̇1

ṗ2 = − p2
T2

+ pm1−∆p1
T2

− n (Patm + p2) · 1
V2
· dV2
dq1

q̇1

ṗ3 = − p3
T3

+ pm2+∆p2
T3

− n (Patm + p3) · 1
V3
· dV3
dq2

q̇2

ṗ4 = − p4
T4

+ pm2−∆p2
T4

− n (Patm + p4) · 1
V4
· dV4
dq2

q̇2

(4.22)
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This is a MIMO system with two inputs (∆p1 and ∆p2) and two outputs (q1 and
q2). Expressions for A, B and H−1 can be found in appendix C, section C.1.

4.3.3 Feedback linearization

Feedback linearizing (4.22) as a MIMO system would be the logical step to take.
The result of this operation is, however, very dependent on the accuracy of the
model. In this case, modeling errors (such as the linear approximation in (3.2))
are too important to give meaningful results (this was veri�ed experimentally by
implementing a sliding mode controller based on a MIMO-feedback linearization
of (4.22)).

The approach we have taken here is to consider (4.22) to consist of two SISO
systems, which are individually feedback linearized (only with respect to their own
state variables) and individually controlled (one sliding mode controller per SISO
system, i.e. per link). This approach (similar to what is done in Slotine and Li
(1991), p. 398) essentially neglects the coupling that exists between both links,
thus reducing the necessary modeling accuracy. Coupling e�ects are encountered
as disturbances for the individual controllers.

When considering (4.22) to consist of two (coupled) input-a�ne SISO systems,
we can write them as

ẋi = f i + giui (4.23)

yi = hi(xi) (4.24)

with i = 1, 2 (1 for upper arm, 2 for lower arm), xi =
[
qi ωi p2i−1 p2i

]T
being the state vectors (with ωi = q̇i), ui = ∆pi the scalar inputs, yi = hi(xi) = qi
the scalar system outputs, and

f i =


ωi

−ai,1ω1 − ai,2ω2 − bi + h−1
i,1 τ1 + h−1

i,2 τ2
pmi−p2i−1

T2i−1
− n

V2i−1
(Patm + p2i−1) dV2i−1

dqi
ωi

pmi−p2i
T2i

− n
V2i

(Patm + p2i) dV2i
dqi

ωi



gi =


0
0

1/T2i−1

−1/T2i


τ1 and τ2 are de�ned in eqs. (2.16)-(2.17), and expressions for the elements ai,j ,
h−1
i,j and bi of the matrices A and H and of vector B, respectively, can be found in

appendix C, section C.1.

Because of the presence of the pressure dynamics these SISO systems are not in
controllability canonical form (see footnote 3 on p. 90). This means we cannot
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immediately apply standard sliding mode control techniques. We have to feedback
linearize the systems �rst.

Both 4th order SISO systems (4.23) have relative degree 3, which implies that6

(Sastry, 1999)

LgiL
j
f i
hi (xi) = 0 j = 0, 1 (4.25)

LgiL
2
f i
hi (xi) 6= 0 (4.26)

Since both systems have relative degree 3, the coordinate transformation

ξi1 = hi (xi) (4.27)

ξi2 = Lf ihi (xi) (4.28)

ξi3 = L2
f i
hi (xi) (4.29)

ηi (xi) with Lgiηi (xi) ≡ 0 (4.30)

transforms (4.23)-(4.24) to the required form (see for instance Sastry (1999)):

ξ̇i1 = ξi2 (4.31)

ξ̇i2 = ξi3 (4.32)

ξ̇i3 = bi (ξi, ηi) + ai (ξi, ηi)ui (4.33)

η̇i = ri (ξi, ηi) (4.34)

with bi (ξi, ηi) = L3
f i
hi, ai (ξi, ηi) = LgiL

2
f i
hi, ri (ξi, ηi) = Lf iηi and ξi =[

ξi1 ξi2 ξi3
]T
. Since the practical calculations quickly become very complex

all expressions were calculated with symbolic mathematics software. The same
software was used to show that (4.27)-(4.30) is in fact a di�eomorphism (by show-
ing that its Jacobian is nonsingular), as is required for feedback linearization Sastry
(1999); Slotine and Li (1991).

Full details about the coordinate transformations, including a discussion of the
stability of the internal dynamics η̇i = ri (ξi, ηi), can be found in appendix C,
section C.2.

6The scalar function

Lf h (x) =
∂h

∂x
f (x) =

nX
i=1

∂h

∂xi
fi (x)

is called the Lie derivative of the scalar function h (x) with respect to the vector �eld f (x) =ˆ
f1 (x) f2 (x) · · · fn (x)

˜T
. It is simply the directional derivative of h in the direction

of f . The Lie derivative can be taken multiple times, for instance L2
f h (x) = Lf Lf h (x) =

Lf

`
Lf h

´
(x). In general Lkf h (x) is de�ned as Lf

“
Lk−1

f h
”

(x), with L0
f h (x) = h (x). See for

instance Sastry (1999); Slotine and Li (1991) for more information.
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4.3.4 Controller

The systems (4.31)-(4.34) are now in a form suitable for sliding mode control tech-
niques. To design a sliding mode controller that makes these systems track their
respective desired output trajectories yim (t) = qim (t), we use ei (t) = yim (t)−yi (t)
to de�ne the sliding surfaces si (xi, t) = 0, with si (xi, t) given by

si (xi, t) = ëi + αi1ėi + αi0ei (4.35)

The coe�cients αi0 and αi1 are chosen so that the polynomials p2 +αi1p+αi0 are
Hurwitz (see footnote p. 92). This way, if the state trajectory is on the sliding
surface (if si = 0), the error will tend to zero according to the error dynamics
(4.35).

In view of eq. (4.25)-(4.26), we have

ẏi =
∂hi
∂xi

ẋi = Lfihi (xi) + Lgihi (xi)ui = Lfihi (xi)

ÿi = L2
fihi (xi) + LgiLfihi (xi)ui = L2

fihi (xi)

so (4.35) becomes

si (xi, t) = ÿim − L2
fihi (xi) + αi1 (ẏim − Lfihi (xi)) + αi0 (yim − hi) .

When on the sliding surface the system dynamics are described by ṡi = 0, which
becomes (using ai = LgiL

2
fi
hi (xi), bi = L3

fi
hi (xi) and LgiLfihi (xi) = 0):

ṡi (xi, t) =
...
y im − L3

fihi (xi)− LgiL
2
fihi (xi)ui + (4.36)

αi1
(
ÿim − L2

fihi (xi)− LgiLfihi (xi)
)

+ αi0

(
ẏim − ḣi

)
(4.37)

=
...
y im − bi − aiui + αi1 (ÿim − ÿi) + αi0

(
ẏim − ḣi

)
(4.38)

=
...
y im − bi − aiui + αi1ëi + αi0ėi (4.39)

= 0. (4.40)

The equivalent control (or continuous control law that would maintain ṡi = 0 if
the dynamics were exactly known) is thus given by

ueq,i =
1
ai

(
...
y im − bi + αi1ëi + αi0ėi)

(ai = LgiL
2
fi
hi 6= 0 because of (4.26), see also appendix C, section C.2). By adding

a discontinuous switching term we �nally get the sliding mode control law:

ui =
1
ai

(
...
y im − bi + αi1ëi + αi0ėi +Ki sgn (si (xi, t))) (4.41)
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Substitution of this control law in (4.7) gives

ṡi (xi, t) = −Ki sgn (si (xi, t)) ,

so if Ki is large enough to overcome system uncertainties, modeling inaccuracies,
interactions between the links and perturbations we have

ṡisi < 0,

which implies that the sliding surface will be attractive and will be reached in �nite
time.

As is well known, once the sliding surface is reached the term K sgn (si (xi, t)) in
(4.41) will cause excessive control chattering. To reduce this problem, a boundary
layer (see Slotine and Li (1991)) is introduced by replacing sgn (si) with sat (si/Γi),
where Γi are constants determining the width of the boundary layers. The sat
function is de�ned in eq. (4.10). Of course, these boundary layers diminish tracking
precision.

4.4 Results

4.4.1 Simulation

Before implementing, the controller was tested in simulation. The system model
(4.22) was used to simulate the system's motion, so no extra unmodeled dynamics
was introduced. Of course, the system parameters are never exactly known, so
di�erences between the parameters used by the controller and the ones used by
the simulation model were introduced. Since in practice it is di�cult to measure
angular velocity signals, white noise was added to these signals in the simulation.
Boundary layers were introduced to smoothen the control signals.

Figure 4.10 shows the performance of the developed controller when the system
had to track a circular trajectory (diameter 20 cm) in Cartesian space during a
period of 5 seconds. In this particular simulation run, the mass of both links was
chosen 20% higher than the values used in the controller. The left part of �g. 4.10
shows how the system tracks the trajectory (only one period shown), while the
right part shows the position error e, given by

e =
√

(x− xd)2 + (y − yd)2
.

x and y indicate the Cartesian position of the tool center point, xd and yd give the
desired position.

The simulations show that the controller is capable of achieving relatively good
tracking performance even when considerable noise is injected and parameter val-
ues di�er signi�cantly from their expected values, provided that any unmodeled
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Figure 4.10: Simulation results for tracking a circular trajectory. Fig. (a) shows
the desired and the actual trajectory for one revolution, �g. (b) shows the position
error for three revolutions.

dynamics (if present) can be considered to be much faster than the dynamics of
the rest of the system.

4.4.2 Experiments

On the actual arm, we expect unmodeled dynamics to be present. The main
contributors are the pressure regulating valves since they were modeled as simple
�rst order systems, a rough approximation at best.

When testing the sliding mode controller, the chattering problem turned out to
be quite severe. This can partly be interpreted as an attempt of the controller to
compensate for the unmodeled dynamics present in the system. Experimentation
and tuning showed that choosing the valve time constants Ti 20 to 50 percent lower
than the (estimated) actual value signi�cantly reduced chattering without a�ecting
tracking performance too much. Signi�cant boundary layers were nevertheless
necessary.

To illustrate performance, the position error e recorded during the same experi-
ment as the one simulated in section 4.4.1 is shown in �gure 4.11. It is clear that
the necessary introduction of boundary layers causes a signi�cant tracking error.
Part of the error can also be explained by the fact that the controller is not robust
with respect to uncertainties in the mechanical model, since they are unmatched
(see also section 4.2.6).

The results show that in the context of sliding mode control of pneumatic muscle
systems simulation results should be considered with care. Pressure dynamics is
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Figure 4.11: Measurements taken while tracking a circular trajectory. Fig. (a)
shows the desired and the actual trajectory for one revolution, �g. (b) shows the
measured position error for three revolutions.

too slow to be ignored, and di�cult to model accurately. Introducing approximate
models makes it possible to realize an e�ective controller, but more research is still
necessary to improve tracking performance.

The presented experimental results were not obtained using the hardware con�g-
uration as described in section 2.4, the most important di�erence being the servo
valves. In the experiments, the gauge pressure in muscles 1 and 3 was controlled
by Kolvenbach KPS 3/4-10 valves with internal pressure sensor. The pressure in
the other muscles was controlled using Tecno G1/8,NW2 valves, also with internal
pressure sensor.

Due to the controller's high complexity (as can be seen in appendix C), the need
for extensive manual tuning and the chattering problem, it was decided not to
re-implement it on the new hardware.

4.5 Conclusion

In this chapter, a sliding mode controller for the 2-DOF planar pneumatic manip-
ulator was presented. The decision to try sliding mode control was inspired by its
good safety features, its robustness and encouraging results reported in literature.

In practice, it turns out that sliding mode control is very hard to implement.
Pressure dynamics has to be taken into account to make it work, at the cost
of an enormous increase in complexity. Additionally, robustness is lost, which
is one of the most salient properties of sliding mode control. In spite of this,
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experiments show that with manual tuning reasonable results can be obtained,
although chattering remains a problem.

Most of these issues can be overcome by using proxy-based sliding mode control,
which is the subject of the next chapter.
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Chapter 5

Proxy-Based Sliding Mode Control

5.1 Introduction

Proxy-Based Sliding Mode Control (PSMC) was introduced by Kikuuwe and Fuji-
moto (2006) as a robot control method that can combine accurate tracking with a
smooth and slow response to large positional errors.

The slow response is based on sliding mode control, but instead of controlling the
robot the sliding mode controller acts on the proxy, a virtual object considered to
be attached to the robot by means of a PID-type virtual coupling. This concept
results in a discrete-time controller free of the chattering that plagues sliding mode
control.

The sliding mode part of the controller dominates the response to large position
errors, which should be slow for safety reasons, without impairing tracking perfor-
mance in normal operation, which is mainly determined by the virtual coupling.

This chapter describes PSMC, how it was applied to the pneumatic arm and how
well it performs. Safety aspects are discussed in the next chapter.

As an application of the manipulator being used in contact with humans, an
interactive mode was implemented that allows the users to manually reposition the
end-e�ector. This was done with admittance control, using PSMC for the inner
position control loop.

The chapter is organized as follows: section 5.2 starts with a detailed analysis of
the proxy-based sliding mode controller, its behavior and its properties. Section 5.3
describes both task-space and joint-space versions of PSMC, as well as a PID con-
troller, to be used for comparing performance. Experimental results are presented
in section 5.3.4, and discussed in section 5.3.5. The interactive mode is described
in section 5.4, which also introduces the admittance controller and discusses two
ways of estimating the force exerted on the end-e�ector.

105
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5.2 Proxy-based sliding mode control

5.2.1 Introduction

Commonly used robotics tracking control methods have not generally been designed
with safety in mind. A substantial position error of the end e�ector, caused by an
unforeseen event, can provoke a violent, and thus unsafe, response from the robot.
In section 4.2.2, an example illustrated that with a suitable choice of sliding surface,
sliding mode control can provide a smooth, slow recovery in such situations, which
increases safety. Pure sliding mode control can be very di�cult to implement for
pneumatic muscle systems, however, as was seen in chapter 4.

Sliding mode's main problem is chattering (see section 4.2.4), which is caused by
(inevitable) delays in the discontinuous switching of the control output. Kikuuwe
and Fujimoto (2006) have proposed proxy-based sliding mode control as a solution
to this problem. It extends PID control with the slow recovery capability of sliding
mode control without compromising tracking performance, and was tested on a
2-DOF electrically actuated robot without passive compliance.

5.2.2 Replacing the signum function

The discontinuous signum function sgn (·) is traditionally de�ned as (Khalil, 2002)

sgn (x) =


1 if x > 0
0 if x = 0
−1 if x < 0.

Proxy-based sliding mode control (PSMC) is based on a modi�ed de�nition of the
signum function,

sgn (x)


= 1 if x > 0
∈ [−1, 1] if x = 0
= −1 if x < 0,

(5.1)

where sgn (x) can take any value in the interval [−1, 1] when x = 0. Using this
de�nition, Kikuuwe and Fujimoto (2006) show the following equivalence:

y = sgn (x− y) ⇐⇒ y = sat (x) , (5.2)

with the unit saturation function sat (·) de�ned as in eq. (4.10). See appendix D
for their proof and for a vectorial version of (5.2).

Fig. 5.1 illustrates the signi�cance of (5.2): if the discontinuous switching function
sgn (·) is enclosed in a feedback loop without time delay, it can be replaced by the
unit saturation function, which is continuous.
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Figure 5.1: Equivalence of y = sgn (x− y) and y = sat (x). Figure reproduced
from Kikuuwe and Fujimoto (2006).

Fc

Fa−FcPID−type virtual
coupling

proxy

Figure 5.2: Principle of Proxy-Based Sliding Mode Control.

5.2.3 Proxy

In order to remove all delays in the feedback loop around the sgn element, the loop
must be closed within the controller software itself (i.e. without passing through
any (physical) sensors or actuators). In proxy-based sliding mode control, this is
achieved by introducing a proxy or �god-object�, a concept borrowed from haptics
(Zilles and Salisbury, 1995).

The proxy represents a virtual object that is controlled by an ideal sliding mode
controller, without chattering. It is considered to be connected to the robot's end-
e�ector by means of a PID-type virtual coupling (a concept that originated in
haptics as well, see Colgate et al. (1995)). This is illustrated in �gure 5.2 for a
2-DOF robot in the horizontal plane1.

The sliding mode controller exerts a force F a on the proxy. The PID-type virtual
coupling will cause an interaction force F c between end e�ector and proxy, depend-
ing on their relative positions. The (statical) torques that would be produced in

1In case of a PD-coupling, the proportional part (P) is usually represented by a spring, while
the derivative part (D) of the coupling is represented by a damper. In proxy-based sliding mode
control, the coupling is of the PID-type (in general). Since there is no similar physical analog for
the integral part (I) of the coupling, the whole PID-type virtual coupling is simply depicted as a
spring in �g. 5.2.
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the robot joints if F c were physically present are given by the well-known relation
(see for instance Spong et al. (2006))

τ = JT (q)F c (5.3)

(with J (q) the the robot's Jacobian matrix). Actually applying these torques
will cause the end e�ector's position to be servo-controlled to follow the proxy's
position.

If rp and ṙp are the proxy's position and velocity, and rd and ṙd are the desired
position and velocity, a sliding mode control law that can be used to control the
proxy is given by2

F a = F sgn (s) (5.4)

with
s = (rd − rp) + λ (ṙd − ṙp) . (5.5)

The quantity F in eq. (5.4) can be considered as an actuator force magnitude
limit, representing the maximum force (in norm) that will be exerted by the sliding
mode controller. As explained in section 4.2.1, once the proxy is kept on the sliding
surface s = 0, its position and velocity errors will exponentially decay to zero with
time constant λ > 0. Thus, it will gently converge to the desired trajectory.

The force produced by the PID-type virtual coupling is

F c = Kp (rp − r) +Ki

∫
(rp − r) dt+Kd (ṙp − ṙ) (5.6)

with r and ṙ the end e�ector's actual position and velocity, respectively. In order
to eliminate the integral in (5.6), we introduce

a =
∫

(rp − r) dt, (5.7)

(which can be considered to be a state of the proxy-virtual coupling system) to
obtain

F c = Kpȧ+Kia+Kdä. (5.8)

By setting
σ = (rd − r) + λ (ṙd − ṙ) (5.9)

eq. (5.4) can also be written as a function of a,

F a = F sgn (σ − ȧ− λä) . (5.10)

The equations of motion of the proxy (initially modeled as a point mass m) are
given by

mr̈p = F a − F c. (5.11)

2The signum function of a vector is de�ned in eq. (D.6) on page 190.
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If we would want to implement a controller using (5.8) and (5.10), the motion
of the virtual proxy mass would have to be simulated in software (by numerically
integrating (5.11)). Kikuuwe and Fujimoto (2006), however, realized that the proxy
mass can be set to zero. Equation (5.11) then gives us

F a = F c, (5.12)

showing that the forces acting on the proxy are always balanced. This and other
implications of having a massless proxy are investigated in more detail in section
D.2.

Since both forces are equal, we set

F a = F c ≡ f . (5.13)

Eqs. (5.10) and (5.8) then become

f = F sgn (σ − ȧ− λä) (5.14)

f = Kpȧ+Kia+Kdä (5.15)

In order to calculate which torques to apply, we have to know f (see eq. (5.3)).

5.2.4 Discrete-time controller

One way to calculate f is using a discrete-time representation of (5.14)-(5.15).

We write the value of vector x at timestep k as x [k] (i.e. x [k] = x (kT ) if T is
the sampling period). By introducing the backward di�erence operator ∇, de�ned
by

∇x [k] = x [k]− x [k − 1] , (5.16)

we can approximate ẋ at timestep k by

ẋ [k] =
∇x [k]
T

(5.17)

and ẍ by

ẍ [k] =
∇ẋ [k]
T

=
∇2x [k]
T 2

(5.18)

with

∇2x [k] = ∇ (∇x [k])
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= ∇x [k]−∇x [k − 1]

= x [k]− 2x [k − 1] + x [k − 2] .

Using these de�nitions, a discrete time representation of (5.14)-(5.15) is given by

f [k] = F sgn
(
σ [k]− ∇a [k]

T
− λ∇

2a [k]
T 2

)
(5.19)

f [k] = Kp
∇a [k]
T

+Kia [k] +Kd
∇2a [k]
T 2

, (5.20)

with σ [k] given by (see eq. (5.9))

σ [k] = (rd [k]− r [k]) + λ (ṙd [k]− ṙ [k]) (5.21)

(we don't have to approximate ṙd [k] and ṙ [k] using (5.17) since they are known).
Eqs. (5.19) and (5.20) can be considered as a system of two algebraic equations in
two unknowns, f [k] and a [k].
A �rst step in the solution (which is described in detail in section D.3) is to solve
(5.20) for a [k]:

a [k] =
a [k − 1] (KpT +Kd) +Kd∇a [k − 1] + T 2f [k]

KiT 2 +KpT +Kd
. (5.22)

Substitution in (5.19) gives (calculation shown in section D.3)

f [k] = F sgn (f∗ [k]− f [k]) , (5.23)

with

f∗ [k] =
KiT

2 +KpT +Kd

T + λ
σ [k] +Kia [k − 1] +

λ (KiT +Kp)−Kd

T (T + λ)
∇a [k − 1] .

(5.24)
Eq. (5.23) shows that the discretization has allowed the �closure of a feedback
loop� around the signum function within the software of the controller (cf. section
5.2.2). Since F > 0 we can rewrite (5.23) as

f [k]
F

= sgn (f∗ [k]− f [k])

= sgn
(
f∗ [k]
F
− f [k]

F

)
.

and apply the vectorial version of (5.2) (given in eq. (D.5)) to get

f [k] = F sat
(
f∗ [k]
F

)
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=

{
f∗ [k] if ‖f∗ [k]‖ ≤ F
F f∗[k]
‖f∗[k]‖ if ‖f∗ [k]‖ > F.

(5.25)

Once f [k] is known from (5.25), it can be used to calculate a [k] using (5.22).

The procedure to calculate the output of the proxy-based sliding mode controller
at timestep k can be summarized as follows:

σ [k] = (rd [k]− r [k]) + λ (ṙd [k]− ṙ [k]) (5.26)

f∗ [k] =
KiT

2 +KpT +Kd

T + λ
σ [k] +Kia [k − 1]

+
λ (KiT +Kp)−Kd

T (T + λ)
∇a [k − 1] (5.27)

f [k] =

{
f∗ [k] if ‖f∗ [k]‖ ≤ F
F f∗[k]
‖f∗[k]‖ if ‖f∗ [k]‖ > F.

(5.28)

a [k] =
a [k − 1] (KpT +Kd) +Kd∇a [k − 1] + T 2f [k]

KiT 2 +KpT +Kd
. (5.29)

The calculated value of f [k] can then be used to calculate the torques that have
to be applied in the joints using eq. (5.3),

τ [k] = JT (q [k])f [k] . (5.30)

5.2.5 Continuous-time controller

It is also possible to obtain a continuous-time solution of (5.14)-(5.15). From (5.15)
we have

ä = −Kpȧ+Kia

Kd
+

1
Kd
f .

Substitution in (5.14) gives (bearing in mind that λ > 0, Kd > 0 and F > 0)

1
F
f = sgn

(
σ − ȧ+

λ

Kd
(Kpȧ+Kia)− λ

Kd
f

)

= sgn
(
λ

Kd

(
Kd

λ
(σ − ȧ) +Kpȧ+Kia− f

))

= sgn
(

1
F

(
Kd

λ
(σ − ȧ) +Kpȧ+Kia

)
− 1
F
f

)
,

and application of (D.5) results in

f = F sat
(

1
F

(
Kd

λ
(σ − ȧ) +Kpȧ+Kia

))
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Figure 5.3: Schematic overview of the proxy-based sliding mode controller in con-
tinuous time.

= F sat
(
Kd

F

(
σ − ȧ
λ

+
Kpȧ+Kia

Kd

))

= F sat
(
f∗

F

)

with

f∗ = Kd

(
σ − ȧ
λ

+
Kpȧ+Kia

Kd

)
.

Thus, the continuous-time version of the PSMC controller can be summarized as

f∗ = Kd

(
σ − ȧ
λ

+
Kpȧ+Kia

Kd

)

f = F sat
(
f∗

F

)
ä = −Kpȧ+Kia

Kd
+

1
Kd
f ,

with σ given by eq. (5.9) and a by eq. (5.7). A schematic overview of the controller
is given in �g. 5.3.

Since the implementation is always in discrete time, the rest of this chapter fo-
cusses on the discrete-time version of PSMC that was described in section 5.2.4.
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5.2.6 Discussion

5.2.6.1 Sliding surface

The PSMC controller (5.26)-(5.29) is only concerned with controlling the proxy
such that it exhibits the desired dynamics given by s = 0, with s de�ned in (5.5).
The in�uence of the robotic manipulator is considered to be a disturbance, acting
upon the proxy by means of the virtual coupling.

As explained in section D.2, the (massless) proxy's dynamics are de�ned by the
force-equilibrium condition (5.12) given by (in continuous time)

F sgn (s) = F c, (5.31)

which is thus satis�ed at all times. In view of the de�nition of sgn (·) eq. (D.6),
‖F c‖ can only be less than F if s = 0. If the virtual coupling between manipulator
and proxy exerts a force lower than F (in norm) then s is equal to zero and the
proxy is said to be �on the sliding surface�. Thus, with ‖F c‖ < F the proxy exhibits
the desired dynamics s = 0.
From (5.31) we also infer that ‖F c‖ ≤ F , so the virtual coupling can never exert a
higher force (in norm) than F . s can only be di�erent from zero (or the proxy �o�
the sliding surface�) if ‖F c‖ = F . ‖F c‖ = F doesn't automatically imply s 6= 0,
though.

Alternatively, we can see this by looking at s [k], the discrete-time version of s.
According to (5.19), s [k] is given by

s [k] = σ [k]− ∇a [k]
T

− λ∇
2a [k]
T 2

.

As shown in section D.3 (eq. (D.20)), this is equivalent to

s [k] =
T + λ

KiT 2 +KpT +Kd
(f∗ [k]− f [k]) , (5.32)

with f∗ [k] and f [k] de�ned by (5.27) and (5.28), respectively. Note that f [k] =
F c [k], according to eq. (5.13).

From (5.32) we see that s [k] 6= 0 if f∗ [k] 6= f [k]. From (5.27) and (5.28) we
know this implies ‖f [k]‖ = F . s [k] = 0 when f∗ [k] = f [k] , which is the case if
‖f [k]‖ ≤ F .
We have thus reached the same conclusion: if the virtual coupling exerts a force
strictly less (in norm) than F then the proxy is �on the sliding surface�. If it exerts
a force equal to F , then the proxy may be �o� the sliding surface�, but it isn't sure.

f∗ [k] can be seen as the force that is needed for the proxy to achieve its desired
dynamics. If this force isn't available (i.e. if it is higher (in norm) than the force
limit F ) then s cannot be kept to zero, which implies that the proxy cannot be
kept �on the sliding surface�.
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In this section, statements about being on or o� the sliding surface have been
quoted, since when s equals zero (and stays zero) the proxy can't really be consid-
ered to be in the �sliding mode�. This is explained in section D.4. Since picturing
the proxy on the sliding surface in state-space is still a helpful representation, we'll
continue to use it (but without the quotes). On or o� the sliding surface will be
considered equivalent to s = 0 and s 6= 0, respectively.

5.2.6.2 Compliance

Consider the manipulator of �g. 5.2 to be in a state of static equilibrium, with
both its end-e�ector and the proxy coinciding with the (constant) desired posi-
tion. For simplicity, we'll also assume (for now) that the virtual coupling is purely
proportional (i.e. Kd = 0 and Ki = 0).
Suppose an external force Fe is exerted on the end-e�ector in the x-direction
that causes a small deviation ∆x in the end-e�ector's x-position. Because of the
deviation, the virtual coupling will exert a (virtual) force Kp∆x between proxy and
end-e�ector to pull the end-e�ector back to the proxy. Using (5.3), the controller
causes the robot to apply this force, counteracting Fe. The larger the deviation,
the larger the resisting force of the manipulator, but with a limit of F , since
the virtual coupling can't exert forces higher than the force limit F . Increasing
deviations thus cause increasing resisting forces, but only up to the limit F . All
deviations ∆x where |∆x| > F/Kp are resisted with a force equal in magnitude
to the force limit F , and cause the proxy to leave its sliding surface (it is dragged
away from the desired position by the virtual coupling).

We can also see this behavior in the PSMC equations. Using the assumptions
Kd = 0, Ki = 0 and ṙd = 0, and using (5.26), (5.27) becomes

f∗ [k] =
KpT

T + λ
((rd [k]− r [k])− λṙ [k]) +

λKp

T + λ
· ∇a [k − 1]

T

=
Kp

T + λ

(
T (rd [k]− r [k])− λT ṙ [k] + λ

∇a [k − 1]
T

)
.

If we assume that the external force is applied very gradually, we can assume all
motion happens very slowly, i.e. ṙ ≈ 0. In view of (5.7) and (5.17), we can
approximate ∇a [k − 1] /T by rp − r, so f∗ [k] becomes

f∗ [k] =
Kp

T + λ
(T (rd [k]− r [k]) + λ (rp [k − 1]− r [k − 1]))

Under the assumption ṙ ≈ 0, we have r [k − 1] ≈ r [k]. As long as the deviation
doesn't pull the proxy o� its sliding surface, we also have rp = rd, and since ṙd = 0
we have rd [k − 1] = rd [k]. The above equation thus becomes

f∗ [k] =
Kp

T + λ
(T (rd [k]− r [k]) + λ (rd [k]− r [k]))
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Figure 5.4: Compliant behavior of PSMC: the resisting force f is shown as a
function of position error ∆x = xd − x for two values of the force limit and two
values of the proportional gain Kp. xd and x represent the desired and actual
position, respectively.

= Kp (rd [k]− r [k]) .

Using eq. (5.28), the resisting force is then given by

f [k] =

{
Kp (rd [k]− r [k]) if ‖Kp (rd [k]− r [k])‖ ≤ F
F

Kp(rd[k]−r[k])
‖Kp(rd[k]−r[k])‖ if ‖Kp (rd [k]− r [k])‖ > F.

As long as the force limit is not reached, the virtual coupling (a virtual spring
with spring constant Kp) acts like a real spring. This compliant behavior of the
controller is illustrated in �g. 5.4 for the one-dimensional case.

Similarly, if the virtual coupling is of the PD-type (i.e. Ki = 0) then it will
simulate a spring-damper system (as long as the force stays below the limit). We
see that there is a great similarity between PSMC with a PD-type virtual coupling
and impedance control (Hogan, 1985) without an inertial component.

If the virtual coupling is of the PID-type, the integral component causes the
resisting force to have its own dynamics, it can no longer simply be calculated from
current position and velocity errors. The integral component can be useful when
modeling errors are present. Consider applying the PSMC controller described
above to the 2-DOF pneumatic manipulator. Since it operates in the vertical
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plane, eq. (5.30) has to be complemented with a gravity compensation term:

τ [k] = τ gc [k] + JT (q [k])f [k] .

Assuming the desired position is �xed (ṙd = 0), a PD-type virtual coupling will
allow for a steady state position error if the gravity compensation τ gc [k] isn't
perfect. If the coupling has an integral part, the force exerted by the coupling will
vary in such a way that it pulls the end e�ector towards the proxy. As long as this
force doesn't exceed F (in norm), the position error will go to zero. Otherwise, the
proxy will leave its sliding surface and the position error persists.

Modeling errors can in�uence the compliant behavior of the controller. To see
this, let's assume that errors in τ gc [k] cause the end-e�ector to be vertically below
its (�xed) desired position. Due to the position error, the virtual coupling exerts a
force on the end-e�ector, pulling it upwards. The integral term causes this force to
increase to a value Fi < F until the desired position is reached. Now imagine that
an external force pushes the end-e�ector down. Since the gravity compensation is
not perfect, a portion of the force �available� to provide compliance to the external
in�uence is already used to eliminate the steady state error. In this case, the
resisting force would saturate at F − Fi for deviations higher than (F − Fi) /Kp

(assuming the in�uence of the gravity compensation error doesn't change as the
end-e�ector is moved).

5.2.6.3 Tracking

In order to describe the controller's tracking behavior, we'll distinguish between
two modes, normal tracking and response to large position errors.

The manipulator is considered to be in normal tracking mode if the proxy is on
the sliding surface, and if its position and velocity are �close� to the desired values.
Since �close� is inherently subjective, we'll de�ne it as meaning that the relative
errors between actual end desired values for the proxy's position and velocity are
under 5%. The proxy's trajectory converges to the desired one with time constant
λ according to the �rst-order dynamics s = 0 (with s de�ned in (5.5)). This implies
that the position and velocity errors will drop below 5% after the proxy has been on
its sliding surface for a period of time longer than 3λ (since e−3λ/λ = e−3 ≈ 0.05).
Thus, we'll consider the controller to be in normal tracking mode after s has been
zero for a time of at least 3λ.
If the proxy is not on its sliding surface, or hasn't been on it for longer than 3λ,
the manipulator is considered to be in the response to large position errors mode.

Normal tracking mode When the controller is in normal tracking mode the
proxy isn't in�uenced by the manipulator, since the interaction force stays under
the limit F . It tracks the desired trajectory with ever decreasing error. Since the
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end-e�ector is connected to the proxy by a PID-type virtual coupling, it behaves
as if it were PID-controlled (in task space) to follow the desired trajectory.

Response to large position errors Assume the manipulator of �g. 5.2 to be
in a state of static equilibrium, with both its end-e�ector and the proxy coinciding
with the (constant) desired position. If a human operator pushes the end-e�ector
far enough away from the desired position such that the resisting force saturates at
F , the proxy is pulled away from the desired position. The presence of the resisting
force F can be seen as the sliding mode part of the controller exerting its maximum
force in order to counteract the position error.

When the operator suddenly releases the end-e�ector, the proxy starts moving
towards the goal position, dragging the end-e�ector behind it. When it reaches the
sliding surface, it starts an exponential convergence (with time constant λ) to the
desired trajectory (or position), and will come �close� to it after a time of around
3λ. The end-e�ector follows because of the PID-type coupling.
As in ordinary sliding mode control (see section 4.2.2), the exponential conver-
gence increases safety when using PSMC: large position errors cause a slow conver-
gence to the desired position. The convergence rate is set by the parameter λ. The
slow response doesn't compromise tracking performance in normal operation, how-
ever, since that is (mainly) determined by the parameters of the PID-type virtual
coupling.

5.2.6.4 Relation with traditional controllers

By setting λ = 0 and F →∞, the controller becomes equivalent to a discrete-time
PID controller (Kikuuwe and Fujimoto, 2006). With Ki = 0 and λ = Kd/Kp

they can be seen as force-limited PID control, or as sliding mode control with a
boundary layer (Kikuuwe and Fujimoto, 2006). Proxy-based sliding mode control
can thus be seen as an extension of these conventional methods.

Proxy-based sliding mode control can be considered to consist of two parts: a PID
controller that makes the end-e�ector track the proxy position, and a second part
that determines the proxy position in such a way that a smooth convergence to the
desired trajectory is achieved without exceeding the force limit F . This is similar
to the concept of reference governors (see for instance Kapasouris et al. (1988);
Bemporad and Mosca (1994)). The separation in two parts is shown explicitly in
�g. 5.5, which is equivalent to �g. 5.3 (cf. eq. (5.15)).

The main advantage of the method is the separation of �local� and �global� dynam-
ics. The local dynamics, i.e. the response to small positional errors, is determined
by the virtual coupling (parameters Kp, Ki and Kd), while the global dynamics
(response to large positional errors) is determined by the sliding mode parameter
λ. Thus, it is possible to combine responsive and accurate tracking during normal
operation with smooth, slow and safe recovery from large position errors that can
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ṙ
d

a

aä

f

F
igure

5.5:
P
roxy-based

sliding
m
ode

controller
(in

continuous
tim

e)
as

a
tw
o-part

controller,
sim

ilar
to

the
reference

governor
approach.



Proxy-Based Sliding Mode Control 119

occur after abnormal events.

It is important to note that the discontinuous sgn (·) function does not appear in
the controller equations (5.26)-(5.29). The output is continuous, so the controller
does not induce chattering in the proxy's motion.

5.2.6.5 Summary

As long as the actuator force magnitude limit F is large enough to overcome dis-
turbances, the controller will drive the proxy to its sliding surface. Once on the
sliding surface, it will exhibit a smooth, exponential convergence (determined by
the time constant λ) to the target trajectory. With a properly tuned PID-type
virtual coupling, the end e�ector will follow the proxy closely.

If an external disturbance force larger than F is applied to the end e�ector (be-
cause of a contact with the environment or a human operator, for instance), the
virtual coupling will transfer this force to the proxy, pulling it o� its sliding surface
(since the controller cannot compensate forces larger than F , see eq. (5.4)). The
end e�ector, following the proxy by means of the virtual coupling, thus reacts com-
pliantly to the disturbance, by being pushed out of position while resisting with a
force of magnitude F . Since F is the magnitude of the maximum interaction force
with the environment, its value can be seen as a compromise between robustness
against disturbances and safety for humans (or the environment) in contact with
the robot.

5.3 Controllers

The remaining part of this chapter focuses on the implementation and control
performance of PSMC, which has been implemented in two di�erent versions. In
order to have a reference for performance comparison, PID control with gravity
compensation has been implemented as well.

This section gives a description of the three controllers (one PID- and two PSMC-
based) that were implemented.

5.3.1 PID control

In the case of the PID controller with gravity compensation, both links are con-
trolled by the following control law:

∆p = ∆pgc + ∆pPID,
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valve j and its associated pneumatic muscle.

where ∆pgc provides static gravity compensation (calculated using eqs. (3.18) and
(3.19)), and ∆pPID equals

∆pPID = Kpe+Kdė+Ki

t∫
0

e dτ .

In this expression, e = qd − q, with qd the desired joint angle and q the measured
joint angle.

Fig. 5.6 shows a schematic representation of the PID-based control system.

5.3.2 Proxy-based sliding mode control � Task space imple-

mentation

The task space implementation is the proxy-based sliding mode controller as dis-
cussed in section 5.2, but with the addition of a gravity compensation term:

τ [k] = τ gc [k] + τ psmc [k] .
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τ gc [k] is the torque needed for static gravity compensation, while τ psmc [k] is the
torque calculated by the Proxy-Based Sliding Mode controller (cf. eq. (5.30)):

τ psmc [k] = JT (q [k])f [k] ,

with f [k] calculated from equations (5.26)-(5.29).

In order to apply this torque, we have to know the corresponding actuator gauge
pressures. We can calculate them by rewriting (2.17) in view of the ∆p - approach
introduced in section 3.3.1 (with p2i−1 = pm + ∆pi and p2i = pm −∆pi for joint
index i):

τ =
[
pm (mτ1(q1) +mτ2(q1)) + ∆p1 (mτ1(q1)−mτ2(q1))
pm (mτ3(q2) +mτ4(q2)) + ∆p2 (mτ3(q2)−mτ4(q2))

]
so we have

∆p1 [k] =
τ1 [k]− pm (mτ1(q1 [k]) +mτ2(q1 [k]))

mτ1(q1 [k])−mτ2(q1 [k])
(5.33)

∆p2 [k] =
τ2 [k]− pm (mτ3(q2 [k]) +mτ4(q2 [k]))

mτ3(q2 [k])−mτ4(q2 [k])
(5.34)

with τ [k] =
[
τ1 [k] τ2 [k]

]T
.

Fig. 5.7 shows a schematic representation of the Task-Space Proxy-Based Sliding
Mode control system. Eqs. (5.33) and (5.34) are represented in the diagram by
the block marked with �τ → ∆p�.

5.3.3 Proxy-based sliding mode control � Joint space imple-

mentation

The tracking performance obtained using the previously described PSMC controller
is not entirely satisfactory, as will be discussed in section 5.3.4. This can mainly be
attributed to eqs. (5.33) and (5.34). They perform the conversion of the desired
actuator torques to muscle gauge pressures by means of the muscle torque functions
(which were introduced in section 2.3.2.5, expressions for the mτi are given in
appendix A), but this conversion is not very accurate.

Since the outputs of almost all controllers described in the robotics literature are
desired actuator torques, this is a typical problem that is often encountered when
trying to use a robotics-based control method on a pneumatic muscle system.

As the task-space implementation of PSMC calculates a force that has to be
converted to torques using eq. (5.3), there is no way to avoid the torque to pressure
conversion in task space. That's why it was decided to implement a joint-space
version of PSMC, where both links are controlled separately. This can be made far
less sensitive to model inaccuracies.
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Consider a single robot link in the horizontal plane, as shown in �g. 5.8. In this
case, we consider the proxy to be a virtual link attached to the real link by means of
a torsional PID-type virtual coupling that exerts a torque τc. Similar to task-space
PSMC, we consider the proxy to be controlled by a sliding mode controller that
exerts a torque τa. The proxy's equation of motion is then given by

Iq̈p = τa − τc
with I the proxy's moment of inertia (about an axis perpendicular to the link's
plane of rotation and through point O (cf. �g. 5.8)). By analogy with eqs. (5.4)
and (5.6), τa and τc are given by

τa = τlm sgn ((qd − qp) + λ (q̇d − q̇p))

τc = Kp (qp − q) +Ki

∫
(qp − q) dt+Kd (q̇p − q̇) .

By setting

a =
∫

(qp − q) dt,

σ = (qd − q) + λ (q̇d − q̇)
and I = 0 (the equivalent of having the massless proxy in task-space PSMC) we
arrive at

τ = τlm sgn (σ − ȧ− λä) (5.35)

τ = Kpȧ+Kia+Kdä, (5.36)

exactly as in section 5.2. Since equations (5.35)-(5.36) are simply a one-dimensional
form of (5.14)-(5.15) (although angles are used instead of Cartesian coordinates),
we can essentially reuse the discrete-time solution (5.26)-(5.29).

So far, this doesn't seem to solve the problem, though, the outputs of the con-
trollers3 are still torques that needs to be converted to muscle pressures. The
di�erence with the task-space implementation is that the torques are directly cal-
culated by the PSMC controllers, not by means of eq. (5.3). Each controller
calculates the desired torque to be applied by the muscles in its associated joint.
Since this torque is applied by setting an appropriate value of ∆p , it is also possible
to have the controller output the required value of ∆p directly. All that is required
is a change of units for the gains in the virtual coupling (for instance, instead of
expressing Kp in Nm/rad, we express it in bar/rad).

The Proxy-Based Sliding mode control law now becomes

σ [k] = (qd [k]− q [k]) + λ (q̇d [k]− q̇ [k]) (5.37)

3Since there are two individually controlled links, we now have two separate PSMC controllers.
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∆p∗psmc [k] =
Kd +KpT +KiT

2

λ+ T
σ [k] +Kia [k − 1]

+
(Kp +KiT )λ−Kd

(λ+ T )T
∇a [k − 1] (5.38)

∆ppsmc [k] =

{
∆p∗psmc [k] if

∣∣∆p∗psmc [k]
∣∣ ≤ ∆plm

∆plm sgn
(
∆p∗psmc [k]

)
if
∣∣∆p∗psmc [k]

∣∣ > ∆plm
(5.39)

a [k] =
1

Kd +KpT +KiT 2
((Kd +KpT ) a [k − 1]

+Kd∇a [k − 1] + T 2∆ppsmc(k)
)
. (5.40)

∆plm is a pressure limit similar to the force limit F in equations (5.26)-(5.29).

Having the controllers calculate values of ∆p directly e�ectively bypasses the
torque to pressure conversion. Of course, this means that the controller has to
be able to cope with the non-linearity of the system. Provided that a gravity
compensating feedforward term is used, this didn't turn out to be a problem.

Including the gravity compensation, the control law becomes

∆p [k] = ∆pgc [k] + ∆ppsmc [k] , (5.41)

with ∆ppsmc [k] calculated from (5.37)-(5.40) and ∆pgc [k] the ∆p value necessary
for static gravity compensation (which is given by (3.18) and (3.19) for joints 1
and 2, respectively). Although the accuracy of ∆pgc [k] depends on how accurately
the manipulator and actuators were modeled, the proxy-based sliding mode term
∆ppsmc [k] is completely model independent (i.e. purely feedback based).

Both links are separately controlled using control law (5.41), which means they
both have their own private proxy. A link's proxy will be pulled o� its sliding
surface when the ∆p value corresponding to an external disturbance torque acting
on the link exceeds ∆plm. This causes the link to comply with the external torque,
while resisting with the torque generated by the gauge pressure di�erence ∆plm.
The fact that the �limit value� is a pressure (as opposed to a force in task-space
PSMC) is a disadvantage of the joint-based PSMC implementation, because the
relation between torque and pressure is complex and angle-dependent (see section
2.3.2.5). Thus, the maximum �resisting torque� to external in�uences is not a
constant, but a function of the joint angle.

Fig. 5.9 shows a schematic representation of the Joint-Space Proxy-Based Sliding
Mode control system. Its structure is very similar to the PID-based control system,
as shown in �g. 5.6.



Proxy-Based Sliding Mode Control 125

+
−

+
−

servo
valve

servo
valve

p1∆ p1d

p2d

p2

p1 ma1

ma2

grav.
comp.

τgc

p∆

τ

+
+

servo
valve

servo
valve

+
−

p1,gc∆

p2,gc∆

q1d

q1d
+

+

+
−

PSMC
(Joint−
Space
impl.)

PSMC
(Joint−
Space
impl.)

q2d

q2d

+
−

+
−

q1 q1

q2q2

p2∆
p3

p3d

p4d

p4

ma3

ma4

∆ 2,psmcp

∆ 1,psmcp
+

+

+
+

pm

link

link

M
an

ip
ul

at
or

Figure 5.9: Schematic representation of the Joint-Space Proxy-Based Sliding Mode
controller.

5.3.4 Experimental results

In order to evaluate control performance, a number of experiments were performed
with the three described controllers. This section gives an overview of the tests
that were performed and presents the results. They will be discussed in the next
section.

Table 5.1 lists the values of the control parameters that were used.

The �rst experiment was tracking a circular trajectory (in task space) with a
diameter of 20 cm. Fig. 5.10 shows both joint angles for a circle-period P of 10
seconds (10 seconds per revolution). The positional error ‖rd − r‖ (with r the
Cartesian position and rd the desired Cartesian position) is shown in �g. 5.11 for
periods of 10 and 5 seconds.

In order to test the in�uence of the sliding mode parameter λ, the same exper-
iment was performed with several values of the parameter. Fig. 5.12 shows the
measurements for λ = 0.4 s and λ = 0.8 s.
The Proxy-Based Sliding Mode controllers allow for very high integral gains. Re-
sults for the joint space implementation using Ki = 12 bar/rad · s in both joints
are shown in �g. 5.13, and position errors are shown in �g. 5.14.

Table 5.2 provides a summary of tracking errors for the di�erent controllers.

In a second experiment, the desired trajectory was discontinuously switched be-
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Parameter Value (link 1) Value (link 2)
Kp (bar/rad) 2 1.5
Ki (bar/rad · s) 2 2
Kd (bar · s/rad) 0.1 0.1

(a) PID

Parameter Value
λ (s) 0.4

Kp (N/m) 200
Ki (N/ms) 100
Kd (Ns/m) 10
F (N) 15

(b) PSMC - Task space imple-
mentation

Parameter Value (link 1) Value (link 2)
λ (s) 0.4 0.4

Kp (bar/rad) 2 1.5
Ki (bar/rad · s) 2 2
Kd (bar · s/rad) 0.1 0.1

∆plm (bar) 0.2 0.2
(c) PSMC - Joint space implementation

Table 5.1: Parameter values. Unless otherwise noted, the above parameter values
were used in the experiments.

tween two circular paths. The original circular trajectory had a period of 3.333
seconds, while the second had a period of 10 seconds. Figure 5.15 shows the result.
In �g. 5.16, data from the same experiment are shown, but for di�erent values of
λ.

We also tested the response to step inputs. An example is shown in �gure 5.17,
where the desired value for q1 is switched between 30π/180 and 70π/180, while the
desired value for q2 is kept constant at −80π/180. The angular velocities recorded
during the step are shown in �g. 5.18. Step responses in the case of the high
integral gain are shown in �g. 5.19 for several values of λ.
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Figure 5.15: System response to a discontinuous change in desired trajectory.
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Figure 5.16: System response to a discontinuous change in desired trajectory. Two
values of the sliding mode parameter value λ have been used for both Proxy-Based
sliding mode controllers (in the joint space implementation, the same value of λ
was used for both links).
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Figure 5.17: System response to a step change in desired angle values.
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Figure 5.19: System response to a step change in desired angle values. The con-
troller used was the joint-based implementation of PSMC, using high integral gain
(Ki = 12 bar/rad · s).

5.3.5 Discussion

Due to the high �exibility of the joints, the system can quickly become unstable
when increasing the gains of the PID controller. The gains were thus progressively
increased (by hand), and cannot be set much higher than the values shown in table
5.1 without causing instability in certain regions of the workspace.

Since it is di�cult to obtain signi�cantly better tracking results by additional
parameter tuning, the results obtained with the PID controller (and given gains)
were used as a reference to compare the behavior of both Proxy-Based Sliding Mode
controllers. In this section, only performance with respect to tracking accuracy is
discussed. Safety aspects will be investigated in chapter 6.

It is clear from �gures 5.10 and 5.11 that the task-space implementation of Proxy-
Based Sliding Mode Control (PSMC) has the biggest tracking error of the three
controllers. This was the case in all tracking experiments, as summarized in table
5.2.

As noted above, the main reason for the bad performance of the task-space imple-
mentation is the torque to pressure conversion (represented by the block marked
with �τ → ∆p� in �g. 5.7), which depends on the muscle torque functions. This
(nonlinear) conversion is not very accurate for several reasons:

� It depends on the PPAM parameters. These were estimated (cf. section



134 CHAPTER 5

3.5.1.1) by means of a model that doesn't include hysteresis. Sections 3.5.1.6
and 3.6 have already shown, however, that hysteresis is not an unimportant
e�ect in the controlled system.

� The torque to pressure conversion is static, i.e. it doesn't take into account
any valve or pressure dynamics (cf. section 3.3).

As shown in �gs. 5.9 and 5.6, in the joint space implementation and in the PID con-
troller only the feedforward part (gravity compensation) involves the (inaccurate)
torque to ∆p conversion. The feedback part (PSMC or PID) calculates ∆p values
instead of torques, and thus interacts with the nonlinear muscle-valve dynamics
directly. This results in much better tracking performance.

For ease of comparison, the gains used in the joint-space Proxy-Based Sliding
Mode controller were the same as the ones used in the PID controller. As �g-
ures 5.10 and 5.11 show, both controllers behave almost identically, with the PID
controller performing slightly better.

Due to its decoupling of local and global dynamics, however, the gains of the joint
based PSMC controller can be chosen somewhat higher than in the PID controller.
Especially the integral gain can be taken much higher without causing instability.
Figs. 5.13 and 5.14 show that this greatly improves tracking performance. For
P = 10 s, the average position error drops from 0.0094m (with Ki = 2 bar/rad · s
for both links) to 0.0022m (with Ki = 12 bar/rad ·s). The price to pay is a slightly
oscillatory step response, as shown in �g. 5.19.

Figures 5.15 and 5.17 illustrate the most important property of Proxy-Based Slid-
ing Mode control: the smooth and slow response to sudden changes in desired
position. Increasing the value of λ makes the response slower, as shown in �g.
5.16. In situations of normal tracking (i.e. when the actual position is close to the
desired position (cf. section 5.2.6.3), and the proxy is on its sliding surface), the
value of lambda hardly in�uences control performance, as �g. 5.12 and table 5.2
illustrate.

The parameter λ can thus be used to smoothen the system's response to unforeseen
events, while still achieving good tracking performance in normal situations. Most
traditional control methods cannot do both at the same time. In the case of
PID control, for instance, lowering the gains may improve safety, but will hurt
performance. Making the D-action very high would also (theoretically) limit joint
velocity, but this is not feasible in practice due to noise in the velocity signals.

5.4 Interaction

As as application with interaction between a human and the system, a scenario
was conceived where the user can grab the end-e�ector, move it while the robot
follows, and leave it at a position of his choice within the operating area. This was
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achieved by means of admittance control (using only a damping term) based on
the joint-space implementation of PSMC.

5.4.1 Admittance control

Hogan (1985) divides physical (mechanical) systems in two classes � those that
produce a position in response to an imposed force, called admittances, and those
that produce a force in response to an imposed position, called impedances.

The goal of impedance control (Hogan, 1985) is to control the dynamic interaction
between a robot and its environment. More speci�cally, one usually tries to achieve
an end-e�ector impedance given by (for Cartesian coordinate i)

fe,i = ki · (xi − x0,i) + bi · (ẋi − ẋ0,i) +mi · (ẍi − ẍ0,i) . (5.42)

In this equation, fe,i is the i-th component of the external force fe acting upon the
end-e�ector, xi, ẋi, ẍi are the i-th components of the end-e�ector position, velocity
and acceleration, respectively, and x0,i, ẋ0,i, ẍ0,i represent the components of the
non-contact position, velocity and acceleration (i.e. they represent the desired
motion of the end-e�ector if no external force were present). The constants ki, bi
and mi represent the desired sti�ness, damping and inertia, respectively. If we call
Fe,i (s) = L{fe,i} and Vi (s) = L{ẋi − ẋ0,i}, the above equation corresponds to
the following mechanical impedance (Spong et al., 2006)

Zi (s) =
Fe,i (s)
Vi (s)

=
ki
s

+ bi +mi · s.

In many cases, the inertial part is omitted (m = 0), which means that the desired
impedance equals that of a spring-damper system.

Conceptually, there are two ways in which the robot can be controlled to achieve
the desired end-e�ector impedance (Lawrence, 1988):

� Either it is made to act as a force-source, where the desired force for the robot
to exert on its environment is given by −fe, as can be calculated using eq.
(5.42), based on sensing of the motion. The robot thus acts as an impedance,
producing force in response to an imposed position.

� Or the robot is made to act as a position-source, with the components of
the desired position vector determined by eq. (5.42), based on sensing of the
external force fe. The robot thus acts as an admittance, producing a position
in response to an imposed force. This is called position-based impedance
control (Lawrence, 1988; Valency and Zacksenhouse, 2003) or admittance
control (Villani and De Schutter, 2008).

In the case of the pneumatic manipulator considered in this work, admittance
control is clearly easier to implement, since a position controller has already been
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developed. It is also less model dependent, and is more suitable for systems where
torque control is di�cult, as highlighted by Heinrichs et al. (1997).

For the interaction application, only damping is needed, so the desired mechanical
admittance becomes (using the same damping coe�cient b for both x and y)

Z−1
i (s) =

Vi (s)
Fe,i (s)

=
1
b
,

where i = x, y. By introducing

Pi (s) = L{xi − x0,i} =
Vi (s)
s

this can be written as
Pi (s) =

1
b · sFe,i (s) ,

or with Xi (s) = L{xi} and X0,i (s) = L{x0,i}

Xi (s) =
1
b · sFe,i (s) +X0,i (s) .

In the time domain, this becomes

xi (t) =
1
b

t∫
0

fe,i (t′) dt′ + xO,i (t) . (5.43)

We cannot expect to obtain an accurate representation of the desired admittance,
however, since admittance control requires a sti� (high gain) position controller
(Richardson et al., 2003), which PSMC is not (cf. section 5.2.6.2). Additionally,
due to the limited control bandwidth, no controller would be able to make the
system appear sti�, so the intrinsic compliance (which is not included in the desired
admittance) can always be felt by the user.

5.4.2 Force estimation

In order to implement (5.43), we have to know the external force fe that acts on
the end-e�ector. Since the end-e�ector isn't equipped with a force sensor, the force
has to be estimated based on the measured actuator forces. In this section, two
approaches are discussed to achieve this.

5.4.2.1 Recursive least-squares

A simple way to estimate the external force is to use recursive least squares esti-
mation with exponential forgetting.
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We start by adding a term to the dynamic model of the robot (including friction,
as given by eq. (3.29)) to incorporate the in�uence of the external force (Spong
et al., 2006):

H (q) q̈ + C (q, q̇) q̇ +G (q) + τ f (q̇) = τ + JT (q)fe.

In order to eliminate the acceleration q̈, we use the �ltering technique that was
discussed in section 3.5.2.2. Writing 〈x (t)〉F (s) to indicate the signal that results
from �ltering time signal x (t) using a �lter with transfer function F (s), this gives

〈H (q) q̈ + C (q, q̇) q̇ +G (q) + τ f (q̇)〉F (s) = 〈τ 〉F (s) +
〈
JT (q)fe

〉
F (s)

.

Transfer function F (s) is given in eq. (3.21). The left-hand side of the above
equation can be written as Kf (q, q̇)θ (as in eq. (3.27), but using the modi�ed
version of W3 (q, q̇) given in section B.4.1 (due to the inclusion of friction)), where
θ is the vector of dynamic parameters that was estimated in section 3.5.2. Writing
the �ltered version of τ as τ f (i.e. τ f = 〈τ 〉F (s)) we have〈

JT (q)fe
〉
F (s)

= Kf (q, q̇)θ − τ f .

If we assume that the external force fe varies slowly, we can consider it to be
constant with respect to the low-pass �ltering,〈

JT (q)
〉
F (s)

fe = Kf (q, q̇)θ − τ f .

By setting
Af =

〈
JT (q)

〉
F (s)

(5.44)

and
yf = Kf (q, q̇)θ − τ f , (5.45)

we get
Affe = yf . (5.46)

IfN measurements are available, the weighted least-squares estimate of the external
force is then given by (Ljung, 1999)

f̂e = arg min
fe

N∑
k=1

β (N, k) · (yf [k]−Af [k]fe
)2
, (5.47)

where the numbers β (N, k) are the weights. If the weights are chosen as

β (N, k) = µN−k

with 0 ≤ µ ≤ 1 then data from the past will be exponentially discounted.
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A recursive algorithm to �nd f̂e according to (5.47) is then given by (see for
instance Ljung (1999))

f̂e [k] = f̂e [k − 1] + L [k]
(
yf [k]−Af [k] f̂e [k − 1]

)
L [k] = P [k − 1]ATf [k]

(
µI +Af [k]P [k − 1]ATf [k]

)−1

P [k] =
1
µ

(
P [k − 1]

−P [k − 1]ATf [k]
(
µI +Af [k]P [k − 1]ATf [k]

)−1
Af [k]P [k − 1]

)
,

with L [k] and P [k] 2 by 2 matrices.

Ljung (1999) calls

T0 =
1

1− µ
the �memory time constant� of the exponential forgetting algorithm, expressed in
number of samples. Measurement taken more than T0 timesteps ago contribute
with a weight less than e−1 ≈ 36% of that of the most recent measurement. We
will assume that the external force remains nearly constant for periods of around
100 samples (or 0.1 s), which leads to a forgetting factor µ equal to 0.99.
Note that the recursive least-squares algorithm allows us to estimate fe with-
out inversion of the inertia matrix H (q), and without knowledge of the angular
accelerations (due to the �ltering).

5.4.2.2 Generalized momentum based observer

A second way to estimate the external force acting on the end-e�ector is based
on a generalized momentum based disturbance observer introduced in De Luca
and Mattone (2003, 2005); De Luca et al. (2006). It assumes the presence of
a disturbance torque τ d in the joints (which we will assume to be produced by
an interaction force at the end-e�ector). Including the disturbance torque, the
dynamic equation (3.29) becomes

H (q) q̈ + C (q, q̇) q̇ +G (q) + τ f (q̇) = τ + τ d. (5.48)

The observer is based on the robot's generalized momentum, which is de�ned as

p = H (q) q̇.

Its time derivative is then given by

ṗ = H (q) q̈ + Ḣ (q) q̇. (5.49)
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Figure 5.20: Schematic overview of the generalised momentum based observer.

Using eqs. (5.48) and (B.2) this can be written as

ṗ = τ − C (q, q̇) q̇ −G (q)− τ f (q̇) + Ḣ (q) q̇ + τ d

= τ +
(
Ḣ (q)− C (q, q̇)

)
q̇ −G (q)− τ f (q̇) + τ d

= τ + CT (q, q̇) q̇ −G (q)− τ f (q̇) + τ d. (5.50)

This equation shows the advantage of using the generalized momentum: the time
evolution of p is decoupled with respect to the disturbance torque, the i-th com-
ponent of ṗ only depends on the i-th component of τ d.

Assume now that we want to design an observer for p instead of for τ d. We can
then imitate the procedure used in linear systems: construct a model of (5.50)
(ignoring the term τ d since it isn't measured) and apply the prediction error e =
p − p̂ as an extra input (Friedland, 1996). Writing p̂ as the prediction of p, the
observer dynamics are then given by

˙̂p = τ + CT (q, q̇) q̇ −G (q)− τ f (q̇) +KIe, (5.51)

where KI is a diagonal gain matrix with positive gains. A schematic representation
of the observer is shown in �g. 5.20.

Since in (5.51) perfect model and actuator torque knowledge was assumed, we see
that the term KIe in (5.51) corresponds to τ d in (5.50). Writing r = KIe, we
have (using (5.50) and (5.51))

ṙ = KI

(
ṗ− ˙̂p

)
(5.52)

= KIτ d −KIr.
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If we write the i-th diagonal elements of KI as KI,i, and with Ri (s) = L{ri}
and Td,i (s) = L{τd,i} the above can be written in the Laplace domain for each
component,

Ri (s) =
KI,i

s+KI,i
Td,i (s) . (5.53)

We see that r is the result of passing the disturbance torque through a �rst-order
low pass �lter. Of course, this only holds for a perfect model. All modeling and
measurement errors will be attributed to a (nonexistent) disturbance torque by the
observer.

By integrating (5.51) with respect to time (assuming zero initial conditions for ˙̂p)
we have

r = KI (p− p̂)

= KI

p− t∫
0

(
τ + CT (q, q̇) q̇ −G (q)− τ f (q̇) + r

)
dt

 , (5.54)

which can be used to implement the disturbance observer. In order to use the
estimated system parameters θ (cf. section 3.5.2), the model dependent parts of
the above equation were expressed in a form that is linear in the parameters,

r = KI

p− t∫
0

(τ +W4 (q, q̇)θ + r) dt

 ,

with
W4 (q, q̇)θ = CT (q, q̇) q̇ −G (q)− τ f (q̇) . (5.55)

An expression for W4 (q, q̇) can be found in section B.4.1.

If the estimation of the disturbance torque has to be very accurate, the gains in
KI should be chosen as high as possible. Since in practice the measured signals are
noisy (especially the torque measurement), we'll use low gains to obtain a suitably
low-pass �ltered signal. The valuesKI,i on the diagonal of KI were both chosen
equal to 10π rad/s. The cuto� frequency (5 Hz) is then equal to the one used in the
�lter of section 3.5.2.2 (which is used to remove the dependency on accelerations
in the dynamic equation).

Note that just as in the previous method, the observer doesn't require inversion
of the inertia matrix, nor knowledge of the angular accelerations.

In the admittance control application, we assume the disturbance torque is gener-
ated by an external force fe in the end-e�ector. fe is then given by (Spong et al.,
2006)

fe =
(
JT (q)

)−1
r. (5.56)

Since there are no singularities in the workspace JT (q) is always nonsingular.
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Figure 5.21: External force at the end-e�ector during interaction as estimated by
both algorithms.

5.4.2.3 Comparison

To illustrate the di�erence between the force-estimation algorithms, the estimated
forces (using both methods) during an interaction experiment are shown in �g.
5.21. It is clear that the results of both methods agree very well. The output of
the observer is noisier than that of the recursive least-squares algorithm, which is
smoother but also shows a time-lag with respect to the observer. Both smoothness
and time-lag are caused by the exponential forgetting: since many measurements
are taken into account, noise is averaged out, but it takes time for new data to
in�uence the result.

Although both force estimation algorithms look very di�erent, the good match
between their results indicates that they have more in common than may be obvious
at �rst sight. If we leave out the exponential forgetting and use only the last
datapoint available, eq. (5.46) gives

fe = A−1
f yf , (5.57)

which we can compare to eq. (5.56) of the observer:

� yf corresponds exactly to r: both are equal to the low-pass �ltered dis-
turbance torque. For r, this was shown in eq. (5.53). For yf , it follows
from its de�nition (eq. (5.45)) as the di�erence between the (�ltered) torque
prediction Kf (q, q̇)θ and the (�ltered) measured torque τ f .
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We can see the fact that yf = r more explicitly by writing yf as

yf = 〈H (q) q̈ + C (q, q̇) q̇ +G (q) + τ f (q̇)〉F (s) − 〈τ 〉F (s) .

With the choice made for KI , eq. (5.53) implies r = 〈τ d〉F (s). From (5.50),
(5.49) and (B.2) we then have

r = 〈τ d〉F (s)

=
〈
ṗ− CT (q, q̇) q̇ +G (q) + τ f (q̇)− τ〉

F (s)

=
〈
H (q) q̈ + Ḣ (q) q̇ − CT (q, q̇) q̇ +G (q) + τ f (q̇)− τ

〉
F (s)

= 〈H (q) q̈ + C (q, q̇) q̇ +G (q) + τ f (q̇)〉F (s) − 〈τ 〉F (s)

= yf .

� Af in (5.57) corresponds to JT (q) in (5.56). Here both methods are slightly
di�erent, since Af is de�ned in (5.44) as the low-pass �ltered version of JT (q).
If we would use a �ltered version of JT (q) in (5.56) (which makes sense since
r is also the output of a �lter) then the only di�erence between both methods
would be that the least-squares algorithm uses multiple datapoints.

We see that the essential di�erences are the �ltering of JT (q) in the least-squares
algorithm, and of course the fact that the least-squares method uses data from
multiple measurements.

Note that the calculation of r using eq. (5.54) is much easier to implement than
the direct calculation of yf using eqs. (5.45) and (3.27). Since both are equal,
it is possible to calculate yf using (5.54) when using the recursive least-squares
method.

5.4.3 Interaction experiment

The admittance control was implemented based on eq. (5.43). The joint-space
PSMC was used as position controller.

Even in the absence of an external force, the output of the force estimation al-
gorithms is never exactly zero. In order to prevent the estimation errors from
continuously changing the desired position, a deadzone was placed on the esti-
mated external force fe: if ‖fe‖ ≤ Fmin, fe was assumed to be zero. Fmin was
chosen equal to 3 N in the experiments. After some initial testing, the damping
coe�cient b was taken equal to 40 Ns/m.

The interaction experience is very di�cult to quantify or represent in graphs,
it has to be experienced. It was found that it was quite easy to move the end-
e�ector around by applying force on it. When exerting low forces, the system would
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Figure 5.22: Actual and desired end-e�ector positions during an interaction exper-
iment (manipulator under admittance control). The estimated forces have been
scaled, an arrow with length 0.1 m (according to the �gure's axes) represents a
force of 10 N .

sometimes react a bit jumpy. This happened when the norm of the estimated force
alternated between being just over and just under the limit Fmin.

Due to errors in the force estimation, the desired position doesn't evolve in exactly
the same direction as the applied force, causing a discrepancy between actual and
desired position. If the end-e�ector is then suddenly released, it keeps moving
(slightly) for a short time until it has reached the desired position.

No signi�cant di�erences in interaction experience were noticed between the two
force estimation algorithms, both performed well.

Fig. 5.22 shows results of an experiment where the end-e�ector was moved from
point A to point B. In a second phase it was moved from B to C. The dots on the
position trace, spaced 0.1 seconds apart, give an idea of the elapsed time. At each
dot the estimated force at that time is shown if it exceeded the limit Fmin. The
e�ect of the deadzone is clearly visible near B (when the manipulator is moving
towards C).
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5.5 Conclusion

This chapter gave a thorough introduction to proxy-based sliding mode control
Kikuuwe and Fujimoto (2006). Its derivation and most important properties were
discussed. Due to the separation of local and global dynamics, it can combine good
tracking performance with a slow response to large position errors. It achieves this
without chattering, which is a major advantage with respect to ordinary sliding
mode control.

The �standard� PSMC (i.e. the task space implementation) did not provide very
good tracking performance when applied to the pneumatic manipulator, mainly
due to the highly model dependent torque to pressure conversion. For this rea-
son, an adapted and much less model dependent version of PSMC, the joint-space
implementation, was developed. It is very similar to PID control (both in struc-
ture and tracking performance), but can outperform PID since it allows for higher
gains without causing instability. The most important reason for choosing PSMC
is safety, however, not tracking performance. The safety aspects of PSMC will be
discussed in the next chapter.

Based on admittance control and joint-space PSMC, a system was developed that
allows an operator to manually move around and reposition the end-e�ector. In
order to implement the admittance control, the interaction force between the user
and the system has to be known. Since the system doesn't have a force sensor at the
end-e�ector, the interaction force has to be estimated. Two force estimation algo-
rithms were discussed, one using recursive least squares with exponential forgetting
and the other an observer based on generalized momentum. Although di�erent at
�rst glance, they proved to be very similar, and the interactive application worked
well with both of them.
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Safety

6.1 Introduction

In situations where robots share their workspace with humans, and where physi-
cal human-robot interaction is possible or even necessary, safety is of paramount
importance.

In the previous chapter, it was shown that proxy-based sliding mode control pro-
vides a gradual, smooth response to large position errors. Intuitively, this suggests
that it makes the system safer, since in case of collision the impact velocity will be
lower.

On the other hand, the manipulator is very lightweight and compliant. Since in
the literature these properties are often considered to improve safety, maybe the
arm is intrinsically �safe enough�. It is possible that it doesn't need the extra safety
provided by PSMC.

In this chapter, we investigate this issue quantitatively. By means of impact
simulations with initial conditions taken from measured data, we investigate the
safety of the system when using PID and PSMC control. These simulations point
out if the system is intrinsically safe enough, or if it is necessary to use a �safe�
controller such as PSMC.

The chapter starts with a brief overview of robot safety, speci�cally the quanti�-
cation of safety and how safety aspects in�uence design and control. It proceeds
with a discussion about the safety of the manipulator, detailing how the impact
simulations were done and what can be learned from the results. The in�uence of
joint compliance is also discussed, as well as the limitations of the approach.
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6.2 Robot safety

Most robots in use today operate behind secure barriers that keep people outside
of the work envelope (Hägele et al., 2008; Dhillon et al., 2002). In applications that
involve close contact or cooperation between humans and robots, this principle of
�safety by segregation� is no longer useful (Bicchi et al., 2008; Pervez and Ryu,
2008). It is clear, however, that without concrete safety guarantees robots cannot
be allowed to work in close proximity to humans. In this context, safety becomes
more important than traditional robot performance criteria such as speed and
accuracy. Combining safety and performance is an important challenge in the
design of human friendly robotic systems.

Robot safety in general is very broad (see for instance De Santis et al. (2008)),
and covers many aspects ranging from mechanical design over software reliability,
compliant coverings and avoiding sharp edges to psychological issues (letting peo-
ple know which safety features are in place, for instance). An important factor
in practice is also the dependability (Laprie, 1985; Avivzienis et al., 2004) of all
components and the system as a whole (i.e. it should be able to deal with sensor
failure, actuator failure, software failure, etc.). In this work, we will only consider
safety, not dependability.

6.2.1 Quantifying safety

In the context of physical human-robot interaction, safety is interpreted in terms
of the injuries sustained by the human in case of a collision with the robot. In
order to evaluate safety of existing robots, or to optimize robot design or control
for safety, the concept has to be de�ned quantitatively.

Quite some work exists that involves quantitative measures of safety, danger,
injury or pain in the context of human-robot collisions (Yamada et al., 1997; Lim
and Tanie, 2000; Ikuta et al., 2003; Heinzmann and Zelinsky, 2003; Kuli¢ and
Croft, 2006; Wassink and Stramigioli, 2007), but no universally accepted method
of quantifying safety exists today. One mostly relies on injury severity indices
developed in the automobile industry (cf. EuroNCAP (2008); Haddadin et al.
(2007b)). By far the most popular is the Head Injury Criteria or HIC (Versace,
1971), which was introduced to robotics in Zinn et al. (2002); Bicchi and Tonietti
(2004). It is de�ned as

HIC = max
∆t

∆t

 1
∆t

t2∫
t1

‖r̈H‖ dt
2.5

 (6.1)

with ∆t = t2 − t1 ≤ 36ms. ‖r̈H‖ is the magnitude of the head acceleration that
results from the collision, and is measured in multiples of g = 9.81m/s2.
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Mappings exist to translate HIC values to the probability of sustaining an injury of
a certain level, with the levels usually expressed in terms of the Abbreviated Injury
Scale (AIS), (Haddadin et al., 2007a)). Recent research that considers impacts
between robots and crash-test dummies (both experimental and in simulation)
shows that the mapping of HIC to injury level used in the automobile industry
cannot simply be applied in robotics (Haddadin et al., 2007b; Oberer and Schraft,
2007). The main reason is that human-robot impacts occur at much lower velocities
than the ones typically encountered in the car industry. The HIC can still be used
to compare levels of safety, though.

6.2.2 Design and control for robot safety

Haddadin et al. (2008b) have shown that industrial robots are considerably less dan-
gerous than previously assumed in case of collisions without clamping (i.e. when
no part of the body is being squeezed between the robot and a part of the environ-
ment (a wall, for instance)). More speci�cally, they state that �blunt head impacts
without clamping at moderate1 robot speed are, no matter how massive the robot
is, very unlikely to be life-threatening�.

It is clear that there is still a long way to go between �unlikely to be life-threatening�
and �suitable for physical human-robot interaction�. Robots that interact directly
with people are designed in a di�erent way than conventional (industrial) robots.
The two main design criteria that in�uence safety are:

� Low weight � robots designed to be used in contact with humans typically
have low inertia of the moving parts (which limits damage in case of col-
lisions). Examples are the DLR-LWRIII lightweight arm (Hirzinger et al.,
2002) and the Whole Arm Manipulator (WAM, Salisbury et al. (1988)).

� Passive compliance � compliant elements in the robot structure decouple the
inertia of the impacting link and that of the rest of the robot (i.e. the other
links and (in case of electrical actuation) the rotor inertia of the motors).
This means that mainly the impacting link is felt, and only a fraction of the
inertia of the rest of the robot.

A popular way to introduce compliance is by means of compliant actuators.
An overview of compliant actuators is given in Van Ham et al. (2009).

It should be noted that passive compliance isn't always the result of deliber-
ately introducing elastic elements. It can also be a by-product of a lightweight
design or the use of certain transmissions (e.g. harmonic drives or cable trans-
mission) or sensors (e.g. torque sensors), as is the case for the LWRIII. When
this is the case for lightweight robots not speci�cally designed for human in-
teraction it is seen as a disadvantage since mechanical compliance (whether

1Moderate can be interpreted here as up to 2 m/s.
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it is introduced on purpose or not) generally degrades robot performance in
the traditional sense (i.e. speed and accuracy). In the case of rigid links and
�exible joints with constant sti�ness, specialized controllers are available (see
for instance Spong (1987); Tomei (1991); De Luca (2000); Albu-Schä�er et al.
(2007)) to minimize performance loss.

Since it was shown that increasing joint compliance beyond the level naturally
present in the LWRIII doesn't diminish injury potential (Haddadin et al.,
2007b), Albu-Schä�er et al. (2008) propose to use compliant joints as a way
of protecting the robot against impacts (which may break gears, sensors etc.),
much more than the human.

The most often used control strategy for physical human-robot interaction is prob-
ably impedance control (Hogan (1985), see also section 5.4.1) and its variants, but
other methods exist as well. In general, robots are controlled to move relatively
slowly when interacting with people, which reduces impact velocity in case of col-
lision. References that discuss control in a safety context include Lim and Tanie
(2000); Zollo et al. (2003); Kuli¢ and Croft (2006); Formica et al. (2006); Kiku-
uwe and Fujimoto (2006); Albu-Schä�er et al. (2007); Buerger and Hogan (2007);
Haddadin et al. (2008a).

All control based safety methods are inherently limited by the available control,
actuator and sensor bandwidth, though. In case of a sudden impact, they may not
be able to respond fast enough, which means that the natural impedance of the
robot will be felt. This can be dangerous for the human, but also for the robot
(Haddadin et al., 2007b; Albu-Schä�er et al., 2008).

Integrated approaches that combine specialized hardware and control techniques
to improve safety but maintain performance have been reported as well. Distributed
Macro-Mini actuation (DM2, Zinn et al. (2002, 2004b,a)) consists of partitioning
the actuation into separate macro and mini actuators (used in parallel) that provide
for low- and high frequency torque generation, respectively. The mini actuators are
small motors on the joints, the macro actuators are series elastic actuators (Pratt
and Williamson, 1995) placed at the base, at least in the initial concept. In more
recent work pneumatic arti�cial muscles were used as macro actuators (Sardellitti
et al., 2007; Shin et al., 2008).

Another integrated design/control approach is variable sti�ness or more generally
variable impedance actuation (VIA, Bicchi et al. (2001, 2003); Bicchi and Toni-
etti (2004); Filippini et al. (2008)). VIA uses fast and continuous changes of joint
impedance to provide user safety at all times while maximizing (under the con-
straint of safety) control performance. An important result is the �Fast and soft�
concept (Bicchi and Tonietti, 2004). It states that in order to guarantee a (chosen)
maximum level of injury risk, joint compliance should be high when moving fast,
and can be low when moving slowly.
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6.3 Safety of the pneumatic manipulator

The pneumatic manipulator studied in this work ful�lls the principal design re-
quirements of a �safe� robotic system. With a total mass of around 2.5 kg for the
moving parts it can be considered lightweight. It also has highly compliant joints
due to the PPAM actuators, i.e. the system is passively compliant. In addition,
there is active compliance (i.e. compliance by control) when using proxy-based
sliding mode control (see section 5.2.6.2).

By using PSMC control, the response to large position errors can be made appro-
priately slow. This can be seen in �g. 5.15 (p. 131), which shows the response to
a discontinuous change in trajectory, and in �g. 5.17 (p. 132), which shows the
response to a step-input. In both �gures, the response of the PSMC controllers is
much slower than that of the PID controller.

The slow response to large errors limits the impact velocity in case of a collision,
which increases safety. By changing the sliding mode parameter λ used in PSMC,
it is possible to tune the response (make it slower or faster) as desired. This hardly
a�ects normal tracking performance, as was noted in the previous chapter.

It is clear that with proper path planning, sudden changes in desired position
or trajectory as in the examples above don't occur. This doesn't mean they are
impossible, though. A typical example is when someone pushes the arm away from
its desired position (which is possible due to its compliance), and then suddenly
releases it. Under standard PID control, it would much more violently than with
PSMC. Another possibility is a problem with the supply of compressed air (due
to closing a wrong valve, for instance). Cutting the air supply is not in itself
unsafe in this case: due to leaks and valve control actions, the actuators slowly lose
pressure, causing the system to gently �relax� and the position error to increase. At
repressurization, however, the large position error could cause a violent reaction.

Since PSMC is characterized by a slow response, it is expected to be safer than
PID. In the remaining part of this section, we will quantitatively investigate the
di�erence between both control methods with respect to safety by simulating a
collision between a human head and the end-e�ector of the manipulator.

6.3.1 Contact model

In order to simulate a collision, it is necessary to model the contact between head
and robot. One of the simplest models to describe the relation between the relative
penetration of two bodies and the resulting contact force is the Kelvin-Voigt model,
which consists of the parallel connection of a (linear) spring and a (linear) damper:

Fn =

{
kδ + bδ̇ δ ≥ 0
0 δ < 0.
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δ

(a) Kelvin-Voigt

Fn

δ
(b) Hunt-Crossley

Figure 6.1: Hysteresis loops in the Fn-δ plane generated by a collision. Figures
adapted from Diolaiti et al. (2005).

In this equation, Fn is the normal contact force between the bodies, and δ is the
relative indentation. An impact generates a hysteresis loop in the Fn-δ plane, as
shown in �g. 6.1a. Although popular because of its simplicity, the model has some
physical inconsistencies (Gilardi and Sharf, 2002; Diolaiti et al., 2005). The most
obvious ones are the discontinuity of the contact force at impact (point A), and the
�sticky� negative force as the objects are separating (point B). Both inconsistencies
arise at small penetration depths, since there Fn is mainly determined by the
damping term.

By making the viscous damping dependent on the penetration depth, as proposed
by Hunt and Crossley (1975), these problems can be overcome:

Fn =

{
kδn + bδnδ̇ δ ≥ 0
0 δ < 0.

(6.2)

The exponent n is usually close to 1, and takes into account the sti�ness variation
due to the fact that the contact surface area increases with increasing penetration
depth.

Haddadin et al. (2007b) have estimated the parameters k, b and n of the Hunt-
Crossley model (6.2) from impact experiments between the LWRIII lightweight
arm and the head of a Hybrid III crashtest dummy. The impact characteristics of
the Hybrid III's head are comparable to those of the human frontal area (Haddadin
et al., 2007a).

It is gratefully acknowledged that S. Haddadin provided the values of k, b and n
that were estimated. These parameters are crucial to simulate realistic impacts,
and hence to determine realistic safety characteristics.
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6.3.2 Simulation

The collision simulations were performed using approximate models for both the
manipulator and the head. The manipulator was modeled as an unactuated 2-DOF
�exible joint arm with constant joint stifnesses. The in�uence of gravity was not
taken into account (i.e. the impact was assumed to happen in the horizontal plane).
The initial values of the arm-model in the simulation, and the joint stifnesses, were
taken from data measured using the pneumatic manipulator. The mass of the head
was chosen to be 5 kg, and it was assumed that the head's motion after the collision
is unrestrained by either the environment or the rest of the body. This is a justi�ed
assumption, since it is reported that for short impacts the neck has little in�uence
on the motion of the head immediately after impact (Oberer and Schraft, 2007;
Willinger et al., 1999).

Speci�cally, in order to calculate the HIC value for a hypothetical collision at time
t0 using the data measured in an experiment, the following procedure was used:

� The initial position and angular velocity of the simulated model's links are
set to the ones that were actually measured at t0.

� The joint stifnesses in the model are set to the values that were present in
the real system at time t0. They are calculated from the measured data using
eq. (2.18), and are assumed to remain constant during the collision.

� The head is positioned so that it just touches the manipulator's tool-center
point at t0, but there is no interaction force between them. In order to obtain
the highest possible HIC value, the center of mass of the head is placed in the
direction of the Cartesian velocity vector of the TCP at t0. In other words,
the vector rTCP→G, that de�nes the location of the head's center of mass G
at t0 with respect to the TCP, is parallel to ṙTCP , the Cartesian velocity of
the TCP at t0. This is illustrated in �g. 6.2.

2, k2

1 1, k

ω

rTCP

.

ω

G

Head

Figure 6.2: Position of the head at the start of the impact simulation.
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� The motion of the whole system is simulated for a period of 50ms. The head
acceleration is then used to calculate the HIC using (6.1).

6.3.3 Results and discussion

In order to quantify the level of safety that is gained by using PSMC with respect to
PID, HIC values were calculated for two situations: a step response (cf. �g. 5.17)
and a discontinuous change in desired trajectory (cf. �g. 5.15). In both cases, the
PID controller responds rather violently, whereas both proxy-based sliding mode
controllers show a smoother response. This is illustrated in �g. 5.18, which shows
the link angular velocities during the step response. It is thus expected that the
HIC value in case of the PID controller will be higher (i.e. more dangerous) than
for the other controllers.

Since an impact simulation and the maximization in (6.1) takes some computing
time, we did not calculate the HIC (in case of collision) at each timestep of each
measured dataset. Instead, the HIC was calculated at four di�erent instants for
each experiment: the time of maximum recorded Cartesian velocity of the TCP,
the time of maximum recorded angular velocity of both links, and the time of the
maximum recorded value of ‖q̇‖, with q̇ =

[
q̇1 q̇2

]T
. The highest obtained HIC

value was retained as the HIC for that experiment. The results are presented in
table 6.1.

The highest HIC value that appears in table 6.1 is 4.81. According to the standards
of the automotive industry, where the HIC originated, this is very low. A value
of 650, for instance, corresponds to a 5% risk of an injury classi�ed as �serious� or
worse on the Abbreviated Injury Scale (AIS) Haddadin et al. (2007b)).

It is not unusual to �nd low HIC values for collisions between robots and humans,
even in undoubtedly dangerous cases, so the HIC may not be very well suited to
evaluate robot safety Haddadin et al. (2007b); Oberer and Schraft (2007). It can
still be used, however, to compare the safety of di�erent controllers.

The data in table 6.1 show that the HIC values obtained with proxy-based sliding
mode control are at least a factor of 10 lower than the ones obtained with PID
control, and in most cases the di�erences are much higher. This is a clear indication
that PSMC is e�ectively safer. We also see that the HIC decreases for increasing
λ, as expected. Extremely low HICs can be obtained by a relatively high choice
of λ. As shown in sections 5.3.4 and 5.3.5, this can be done without signi�cantly
hurting tracking performance.

Since the HIC, when applied to robotics, does not provide an �absolute� measure
of danger, it is useful to consider the maximum interaction force that occurs during
a robot � head collision. These forces, obtained by the same simulations as the HIC
values and using the same Hunt-Crossley contact model, are also listed in table 6.1.

We see that the PID controller has a much higher maximum interaction force in
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case of collision (hereafter denoted as Fmax) than the Proxy-Based Sliding Mode
controllers. Again, increasing λ (for the Proxy-Based Sliding Mode controllers)
lowers the �danger�, in this case Fmax.

The highest value for Fmax in the table is 1524N , which occurred for the step
response with the PID controller. This is a remarkably high force, especially when
one considers the low weight of the manipulator (around 1.5 kg for the �rst link
and just over 1 kg for the second) and high joint compliances (joint stifnesses were
K1 ≈ 43Nm/rad and K2 ≈ 27Nm/rad at the time of the simulated impact). The
high value for Fmax is caused by the high angular velocities that occur during the
step, as shown in �g. 5.18.

1524N is enough to break several bones in the human face. The maxilla, the
weakest bone in the face, has a fracture tolerance of 660N (Haddadin et al., 2007a).
The Fmax values for the Proxy-Based Sliding Mode controllers are signi�cantly
lower (i.e. safer), and all remain below the maxilla fracture tolerance.

We should note, however, that the used parameters in the Hunt-Crossley model
(6.2) were estimated under assumption of a collision with the frontal bone. Other
bones in the face will have di�erent impact characteristics, so it is not entirely
correct to simply transpose forces calculated for the frontal bone to other bones.
Since the fracture tolerance of the maxilla is around 2.3 times lower than the
maximal force, we can assume that even with a di�erent impact model the resulting
maximum force would remain higher than 660N .

Since to date no accepted criterion exists to classify a robot as safe or unsafe,
we cannot conclude that the pneumatic manipulator is safe when under PSMC
control. It is clear, however, that we can consider the PID controller to be unsafe2

in case of an unforeseen event (represented here by the step response). We also see
that proxy-based sliding mode control signi�cantly improves safety, and that the
sliding mode parameter λ can be interpreted as a �safety parameter� (increasing λ
will increase safety).

We can conclude that the hardware safety features incorporated in the system
(low weight and high compliance) are not by themselves enough to ensure system
safety.

6.3.4 In�uence of joint sti�ness

In order to investigate the in�uence of joint sti�ness, the simulations for the step-
response (which was found to be the most unsafe in the previous section) were
repeated, but with modi�ed joint stifnesses. Instead of using the joint sti�ness as
predicted by eq. (2.18), both joints were set to the same sti�ness k, and k was
varied between 1 Nm/rad and 6000 Nm/rad. The upper limit of 6000 Nm/rad is in

2Evidently, there is no general criterion here either that strictly allows to declare this unsafe.
We have taken the liberty, however, to consider the possibility of fractures of bones in the face as
unsafe.
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the range typically encountered in �exible joint robots (De Luca and Book, 2008).
The resulting impact force is plotted as a function of k in �g. 6.3.

0 1000 2000 3000 4000 5000 6000
k (Nm/rad)
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Figure 6.3: Maximum interaction force in case of a robot-head collision during the
step response of �g. 5.17 as a function of joint sti�ness k.

We see that Fmax hardly changes as the joint sti�ness becomes higher: an increase
of less than 5 N (or 0.33 %) for an increase of 5999 Nm/rad in joint sti�ness. Even
for the high range of sti�nesses (which could never be achieved with PPAMs), the
impacting link is e�ectively decoupled from the rest of the system. The impact
force is almost exclusively determined by the inertia of the impacting link. This is
consistent with the �ndings of Haddadin et al. (2007b); Albu-Schä�er et al. (2008).

It seems that passive compliance plays a double role in robot safety. On the one
hand, it can protect both human and robot in some impacts situations. This could
be the case for instance if the robot is in normal operation and moving slowly, but
collides with a fast moving human. On the other hand, the compliant elements
can store energy, which (when released) can lead to higher speeds, and thus higher
danger, than would be the case without compliant actuators. This �strikeout�
feature is used to greatly increase the throwing distance of a ball by Wolf and
Hirzinger (2008); Albu-Schä�er et al. (2008), and to increase the jumping height
of a robot by Vanderborght et al. (2009). The e�ect is also present in the step
response of the manipulator. We can see this by looking at �gure 6.4, which shows
a small part of �g. 5.18 (only the part corresponding to the upward step in q1,
while the desired value of q2 remains constant, cf. �g. 5.17).
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Figure 6.4: Angular velocities measured for the step response shown in �g. 5.17.

If we look at the PID-trace (in black), we see that as q1 start to rise (q̇1 > 0), q2

decreases (q̇2 < 0). In this phase, the �spring� of the second joint is being loaded.
Soon after, q̇2 starts increasing, as the spring releases its energy3. The consequence
is that both q̇1 and q̇2 are close to their maximum simultaneously for a short period
of time, which results in a high end-e�ector velocity, and hence a high impact force
in case of collision. The spring loading and strikeout is also visible with PSMC,
but there the e�ect is much more moderate.

6.3.5 Limitations

It should be noted that discussion of safety given above has certain limitations:

� As in most robot safety studies, it only considers the initial impact (only
the �rst 50 ms after impact were simulated, inspired by the de�nition of the
HIC). Of course, overall safety will also depend on what happens after impact.
It has been shown on the LWRIII that if the robot detects the impact and
responds appropriately, contact forces can be signi�cantly reduced (Haddadin
et al., 2008a), for instance.

� Clamping was not considered, although it is more dangerous than an un-
constrained collision (Haddadin et al., 2008c). Since the danger in clamping

3Of course, passive compliance isn't the only factor in this behavior, the controller of joint 2
also contributes as it tries to keep q2 constant.
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situations is highly dependent on robot mass, the pneumatic manipulator is
expected to be on the safe side with its total mass of around 2.5 kg.

� Only blunt impacts were considered, no sharp edges or sharp objects attached
to the robot. It is clear that these could greatly increase the danger of any
robotic system.

� No hardware or software errors were considered. It was assumed that all
sensors, actuators, controllers, electronics etc. are working.

Since it was shown that the system can be unsafe when under PID control,
we can assume that it will also be unsafe in case of serious software errors in
the controller.

6.4 Conclusion

In this chapter, impacts between the manipulator and a human head were simulated
under some simplifying assumptions. The response of the head at the time of
impact and immediately afterwards was calculated. Safety was evaluated by means
of the Head Injury Criteria (HIC) and by means of the impact force. Since the
mapping of HIC values to probability of injury level used in the automobile industry
isn't suitable for robotics, and since at the moment no comparable mapping exists
for robotics, the HIC values can only be used to compare levels of safety. Since the
impact force quanti�es safety in a more absolute way, it was found to be a more
useful measure.

Both the HIC values and the impact forces show a signi�cant increase of safety
when using PSMC control, as compared to PID control. Based on the impact forces,
we found that the system can be considered unsafe when under PID control, since
collisions capable of breaking several bones of the face are possible. Using PSMC,
all impact forces remain below the breaking strength of all bones in the head. By
increasing the PSMC parameter λ, they can be kept far below this level. In the
previous chapter, it was shown that this hardly a�ects tracking performance in
normal operation.

The e�ect of joint sti�ness on safety was investigated as well. The maximum
impact force turned out to be almost independent of joint sti�ness over a wide
range of sti�nesses. This indicates that the impact is mainly determined by the
inertia of the impacting link.

The fact that the manipulator is unsafe when under PID control (and can thus be
assumed to be unsafe in the case of software errors in the controller) indicates that
it is not intrinsically safe, in spite of its low weight and high compliance. We see
that passive compliance can be regarded as a double edged sword with respect to
robot safety. It can improve safety in some cases of sudden impact, but its ability
to store and subsequently release energy can also make it more dangerous.
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Chapter 7

Conclusion

This dissertation investigated the problem of safe and accurate control of a light-
weight, two degree-of-freedom manipulator actuated by pleated pneumatic arti�cial
muscles (PPAMs). The motivation for this work stems from the growing interest
in human friendly robotics, a �eld driven by a whole range of new applications that
involve close interaction between robots and humans. Safety is essential in these
applications. However, more often than not, safety is at odds with performance in
robotics.

Several controllers were investigated in this dissertation. The joint-space imple-
mentation of proxy-based sliding mode control (PSMC), presented in chapter 5,
achieved the best control performance. As shown in chapter 6, it also provides a
signi�cant (and tunable) improvement in safety when compared to PID control.
Although no accepted criterion exists by which we could declare the system (i.e.
the manipulator under PSMC control) to be safe, we believe that PSMC is a strong
candidate to help bridge the gap between safety and performance in robotics.

7.1 Overview

Due to the challenges involved in controlling compliant systems in general, and
systems actuated by pneumatic muscles speci�cally, the performance of a controller
cannot be evaluated in simulation. Therefore, a 2-DOF manipulator actuated by
PPAMs was built to serve as a test platform. The properties of the PPAM actuator
and the design of the pneumatic manipulator were discussed in chapter 2. A number
of concepts used in other chapters were introduced as well, including compliance
of a PPAM actuated joint and muscle torque functions.

Because good models can lead to better control, chapter 3 detailed how the manip-
ulator, the actuators and the servo valves were modeled, and how the parameters
present in both static and dynamic models were estimated. These models were
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later used in control of the manipulator (chapters 4 and 5) and in the estimation
of external force (chapter 5, section 5.4.2). To compensate for the lack of angular
acceleration measurements, a �ltering technique was used in the estimation of the
dynamic mechanical model. The same technique was later applied in the force
estimation of chapter 5.

Since the estimation experiments showed the presence of signi�cant hysteresis in
the manipulator, a Preisach-based hysteresis model for the PPAM was proposed.
Since it requires a rather cumbersome initialization, it was not used to improve
control.

Part II of the text, about control, started with an overview of previous work on
control of pneumatic muscle systems, and of the challenges involved.

In chapter 4, an example was used to illustrate that sliding mode control might be
interesting from a safety perspective. With a suitably chosen sliding surface, the
system state starts converging exponentially to the desired state upon reaching the
sliding surface. The time constant of this convergence can be chosen, which allows
to limit the velocity of the system in case of response to a large position error.

Unfortunately, muscle-valve systems have slow dynamics, which cannot be ignored
in sliding mode control. Therefore, a sliding mode controller based on a model that
includes actuator dynamics was proposed. The control design required the complex
and highly model dependent feedback linearization of the system. In spite of the
use of boundary layers, the chattering problem typical for sliding mode control was
quite severe, and tuning the controller was di�cult and time-consuming. Due to
these problems and the high complexity of the controller, it was decided to abandon
sliding mode control.

Proxy-based sliding mode control (PSMC), which in spite of its name is very
di�erent from standard sliding mode control, was the subject of chapter 5. Inspired
by sliding mode control and elements from haptics, it combines the properties
of sliding mode control when responding to large position errors with those of
PID control for small position errors. Task- and joint-space versions of PSMC
were implemented, and their performance was compared to that of PID control.
Especially the joint-space version of PSMC, which isn't as model dependent as the
task-space version, achieved good tracking performance. Both PSMC controllers
can respond slowly to large position errors, which is bene�cial for safety.

Based on admittance control and the joint-space PSMC controller, an interactive
mode was developed that allows the user to reposition the end-e�ector of the robot.
For this application, the external force acting on the end-e�ector has to be known.
Since the system is not equipped with a force sensor at the end-e�ector, the force
had to be estimated. An estimation algorithm based on the �ltered dynamic model
of chapter 3 and on least-squares estimation with exponential forgetting was pro-
posed, and compared with an observer based on generalized momentum. The two
algorithms were found to be very similar.
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Finally, chapter 6 tackled the subject of safety itself. The safety of the manipulator
was investigated by simulating impacts between the manipulator and a human
head. Safety was quanti�ed by means of the head injury criteria (HIC) and by
the maximum interaction force. Initial values for the simulations were taken from
measured data, which allowed to quantify the safety of the manipulator when using
di�erent controllers. The simulations showed that the safety of PSMC is tunable,
and that it can be made signi�cantly safer than PID control. It was also shown
that in spite of its low weight and high compliance, the manipulator is unsafe when
under PID control. In case of a collision, the impact force can be high enough to
break several facial bones.

Varying joint compliance in the simulations had almost no in�uence on the results,
which indicates that the impact is mainly determined by the inertia of the impacting
link.

7.2 General conclusions

Although this work was focused on the control of a manipulator actuated by pneu-
matic muscles, we believe it is possible to draw some conclusions that are valid for
systems actuated by compliant actuators in general:

� Proxy-based sliding mode control e�ectively improves safety, while still achiev-
ing good control performance.

� Low weight and high compliance are not by themselves su�cient to obtain
a safe system. This lack of inherent safety implies that controller software
errors can have serious consequences.

� Passive compliance can be a double edged sword � in some situations, it
improves safety, while in other situations its ability to store energy can make
a robot more dangerous.

� As long as there is some form of passive joint compliance, the impact force
in the case of a human-robot collision is mainly dependent on the inertia of
the impacting link, and independent of the value of the compliance.

7.3 Future work

The work described in this dissertation can be continued in many ways. For control,
some possibilities include:

� Implementing and testing proxy-based sliding mode control on other systems.
In the near future, PSMC will be implemented on a system actuated by the
MACCEPA actuator (Van Ham et al., 2007).
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� Investigating the suitability of PSMC for rehabilitation robotics. This work
has already started, see Beyl et al. (2009).

� Investigating the estimation of joint torques based on measured muscle pres-
sures and a muscle hysteresis model (cf. section 3.6).

The work on safety in chapter 6 can still be signi�cantly expanded. A good place
to start would be to address some of the limitations summed up in section 6.3.5.
Another important step to be taken is to perform actual impact tests, instead of
simulating them.



Appendix A

Torque Calculations

In section 2.3.2 the procedure to calculate the torque functions mτi (with i the
muscle's index as shown in �g 2.7) is explained. In this appendix, we present the
actual calculations. For easier reference, �gure2.9 is repeated here as �g. A.1.
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Figure A.1: Schematic representation of the manipulator with all distances, angles
and attachment points indicated.
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A.1 Muscle torques

In eq. (2.8) on page 20, the torque τm,1 due to muscle 1 in the �rst joint is given
as

τm,1 = F1 (e1 ×OA12) · 1z. (A.1)

Similarly, we have
τm,2 = F2 (e2 ×OA22) · 1z (A.2)

for muscle 2. The torque due to muscles 3 and 4 in the second joint is given by

τm,3 = F3 (e3 × SA33) · 1z (A.3)

τm,4 = F4 (e4 × SA43) · 1z. (A.4)

In these expressions, Fi is the force exerted by muscle i, and ei are unit vectors
along the longitudinal axes of the muscles:

e1 =
OA12 −OA11

‖OA12 −OA11‖ (A.5)

e2 =
OA22 −OA21

‖OA22 −OA21‖ (A.6)

e3 =
OA33 −OA32

‖OA33 −OA32‖ (A.7)

e4 =
OA43 −OA42

‖OA43 −OA42‖ . (A.8)

A.2 Torque functions

Eq. (2.10) on page 20 states the de�nition of the torque function associated to
muscle 1, mτ1, which is derived from (A.1) and (2.2):

mτ1

(
ε1 (q1) ,

l0
R

)
= l20ft0

(
ε1 (q1) ,

l0
R

)
· (e1 ×OA12) · 1z. (A.9)

In order to �nd an expression for mτ1, we have to calculate the factor (e1 ×OA12) ·
1z as well as ε1 (q1).
Similarly, the other torque functions are given by

mτ2

(
ε2 (q1) ,

l0
R

)
= l20ft0

(
ε2 (q1) ,

l0
R

)
· (e2 ×OA22) · 1z (A.10)

mτ3

(
ε3 (q2) ,

l0
R

)
= l20ft0

(
ε3 (q2) ,

l0
R

)
· (e3 × SA33) · 1z (A.11)
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mτ4

(
ε4 (q2) ,

l0
R

)
= l20ft0

(
ε4 (q2) ,

l0
R

)
· (e4 × SA43) · 1z. (A.12)

In these expressions, εi is the contraction of muscle i, which depends on the angle
of the link actuated by the muscle. Using the following coordinates, which can be
derived from �gure A.1,

A11 = [−X11, Y11, 0]T (A.13)

A12 = [− sin(q1) d12 + cos(q1)L12, cos(q1) d12 + sin(q1)L12, 0]T (A.14)

A21 = [X21, −Y21, 0]T (A.15)

A22 = [sin(q1) d22 + cos(q1)L22, − cos(q1) d22 + sin(q1)L22, 0]T (A.16)

A32 = [− sin(q1) d32 + cos(q1)L32, cos(q1) d32 + sin(q1)L32, 0]T (A.17)

A33 = [− sin(q1 + q2)d33 + cos(q1)L1 + cos(q1 + q2)L33,

cos(q1 + q2)d33 + sin(q1)L1 + sin(q1 + q2)L33, 0]T (A.18)

A42 = [sin(q1)d42 + cos(q1)L42, − cos(q1)d42 + sin(q1)L42, 0]T (A.19)

A43 = [sin(q1 + q2)d43 + cos(q1)L1 + cos(q1 + q2)L43,

− cos(q1 + q2)d43 + sin(q1)L1 + sin(q1 + q2)L43, 0]T (A.20)

AL = [LL cos(q1 + q2) + dL sin(q1 + q2) + cos(q1)L1,

−dL cos(q1 + q2) + LL sin(q1 + q2) + sin(q1)L1, 0]T (A.21)

S = [cos(q1)L1, sin(q1)L1, 0]T , (A.22)

and the de�nition of the ei given above, we can write eqs. (A.9)-(A.12) as follows:

mτ1

(
ε1 (q1) ,

l0
R

)
= l20ft0

(
ε1 (q1) ,

l0
R

)
· (sin(q1) (L12X11 − d12Y11) +

cos(q1) (d12X11 + L12Y11))

·
(

(− (sin(q1)d12) + cos(q1)L12 +X11)2 +

(cos(q1)d12 + sin(q1)L12 − Y11)2
)−1/2

(A.23)

mτ2

(
ε2 (q1) ,

l0
R

)
= l20ft0

(
ε2 (q1) ,

l0
R

)
· (− (sin(q1) (L22X21 + d22 Y21)) +

cos(q1) (d22X21 − L22 Y21))
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·
(

(sin(q1) d22 + cos(q1) L22 −X21)2 +

(− (cos(q1) d22) + sin(q1) L22 + Y21)2
)−1/2

(A.24)

mτ3

(
ε3 (q2) ,

l0
R

)
= l20ft0

(
ε3 (q2) ,

l0
R

)
· (cos(q2) (d33 (L1 − L32) + d32 L33)

− sin(q2) (d32 d33 + (−L1 + L32) L33))

·
(
d32

2 + d33
2 + (L1 − L32)2 + L33

2 − 2 sin(q2)

· (d33 L1 − d33 L32 + d32 L33)−

2 cos(q2) (d32 d33 + (−L1 + L32) L33))−1/2 (A.25)

mτ4

(
ε4 (q2) ,

l0
R

)
= l20ft0

(
ε4 (q2) ,

l0
R

)
· (cos(q2) (− (d43 (L1 − L42))− d42 L43)

− sin(q2) (d42 d43 + (−L1 + L42) L43))

·
(
d42

2 + d43
2 + (L1 − L42)2 + L43

2 + 2 sin(q2)

· (d43 L1 − d43 L42 + d42 L43)−

2 cos(q2) (d42 d43 + (−L1 + L42) L43))−1/2 (A.26)

A.3 Contractions

In order to be able to evaluate the torque functions, we still have to �nd the
functions εi (γ), with γ = q1 for muscles 1 and 2 and γ = q2 for muscles 3 and 4.
ε1 (q1) is de�ned in eq. (2.13) (see page 22) as

ε1 (q1) =
Lconn,1 + nm,1l0 − d1 (q1)

nm,1l0
. (A.27)

The others can be de�ned similarly,

ε2 (q1) =
Lconn,2 + nm,2l0 − d2 (q1)

nm,2l0
(A.28)

ε3 (q2) =
Lconn,3 + nm,3l0 − d3 (q2)

nm,3l0
(A.29)

ε4 (q2) =
Lconn,4 + nm,4l0 − d4 (q2)

nm,4l0
, (A.30)
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with

d1 (q1) = ‖OA12 −OA11‖

=
(

(− (sin(q1) d12) + cos(q1) L12 +X11)2+

(cos(q1) d12 + sin(q1) L12 − Y11)2
)1/2

(A.31)

d2 (q1) = ‖OA22 −OA21‖

=
(

(sin(q1) d22 + cos(q1) L22 −X21)2+

(− (cos(q1) d22) + sin(q1) L22 + Y21)2
)1/2

(A.32)

d3 (q2) = ‖OA33 −OA32‖

=
(
d32

2 + d33
2 + (L1 − L32)2 + L33

2−

2 sin(q2) (d33 L1 − d33 L32 + d32 L33)−

2 cos(q2) (d32 d33 + (−L1 + L32) L33))1/2 (A.33)

d4 (q2) = ‖OA43 −OA42‖

=
(
d42

2 + d43
2 + (L1 − L42)2 + L43

2+

2 sin(q2) (d43 L1 − d43 L42 + d42 L43)−

2 cos(q2) (d42 d43 + (−L1 + L42) L43))1/2 (A.34)

the total lengths of the di�erent muscle groups. Since the number of muscles in each
series arrangement nm,i has been chosen during the design (nm,1 = 4, nm,2 = 3,
nm,3 = 4 and nm,4 = 3), all we still have to do to �nd εi is calculate the connection
lengths Lconn,i. From section 2.3.2.4 we have

Lconn,1 = d1,max − nm,1l0 (1− ε1,min) (A.35)

Lconn,2 = d2,min − nm,2l0 (1− ε2,max) , (A.36)

the other ones are de�ned as

Lconn,3 = d3,max − nm,3l0 (1− ε3,min) (A.37)

Lconn,4 = d4,min − nm,4l0 (1− ε4,max) . (A.38)
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Parameter Value (mm)
d1,max 345.0
d2,min 200.5
d3,max 322.3
d4,min 265.8
Lconn,1 117.0
Lconn,2 74.5
Lconn,3 94.3
Lconn,4 139.8

Table A.1: Parameter necessary to calculate the torque functions of the manipula-
tor.

In these expressions, the maximum and minimum muscle lengths in the workspace
are given by

d1,max = arg max
q1,min≤q1≤q1,max

d1 (q1) (A.39)

d2,min = arg min
q1,min≤q1≤q1,max

d2 (q1) (A.40)

d3,max = arg max
q2,min≤q2≤q2,max

d3 (q2) (A.41)

d4,min = arg min
q2,min≤q2≤q2,max

d4 (q2) (A.42)

The minimum values of contraction that are acceptable, ε1,min and ε3,min, are
both chosen equal to 5%, the maximum values ε3,max and ε4,max are set at 30%,
as explained in section 2.3.2.4.

For a given set of attachment point locations and a given workspace, we can
determine d1,max, d2,min, d3,max and d4,min from eqs. (A.39)-(A.42) and substitute
them in eqs. (A.35)-(A.38). Since we also know the muscle length functions from
eqs. (A.31)-(A.34), all the unknows in the muscle contraction equations (A.27)-
(A.30) have now been calculated. Eqs. (A.27)-(A.30) can now be used to evaluate
the torque functions (A.23)-(A.26) once muscle parameters l0 and l0/R have been
chosen.

For the workspace given by (2.6)-(2.7) (page 18), the attachment point locations
given in table 2.1 (page 26) and the muscle parameters chosen in section 2.3.3.1
(page 25), the minimum and maximum muscle lengths and the connection lengths
are listed in table A.1.
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A.4 Maximum load

In section 2.3.3.5 (page 27), the maximum load is calculated. This section provides
the equations from section 2.3.3.5 in more detail.

Eq. (2.22) shows the maximum load according to the second joint when muscle 3
is the carrying muscle. For completeness, it is repeated here as Mmax,2a, together
with the maximum load according to the �rst link and the maximum load according
to the second link when muscle 4 is the carrying muscle:

Mmax,1 =
pmax ·mτ1(q1) + (OG1 × (−m1g1y) +OG2 × (−m2g1y)) · 1z

(OAL × g1y) · 1z (A.43)

Mmax,2a =
pmax ·mτ3(q2) + (SG2 × (−m2g1y)) · 1z

(SAL × g1y) · 1z (A.44)

Mmax,2b =
pmax ·mτ4(q2) + (SG2 × (−m2g1y)) · 1z

(SAL × g1y) · 1z (A.45)

If Mmax,2a > 0 at a certain point in the workspace, then the maximum load for
the manipulator in that point is given by

Mmax = min (Mmax,1,Mmax,2a) ,

otherwise it is given by

Mmax = min (Mmax,1,Mmax,2b) .

As a function of the coordinates (A.13)-(A.22), equations (A.43)-(A.45) become

Mmax,1 = (− (g sin(q1) dG1 m1)− g cos(q1) LG1 m1 − g sin(q1 + q2) dG2 m2−
g cos(q1) L1m2 − g cos(q1 + q2) LG2 m2 + pmax mτ1(q1))

· (g (LL cos(q1 + q2) + dL sin(q1 + q2) + cos(q1) L1))−1

Mmax,2a =
− (g sin(q1 + q2) dG2 m2)− g cos(q1 + q2) LG2 m2 + pmax mτ3(q2)

g (LL cos(q1 + q2) + dL sin(q1 + q2))

Mmax,2b =
− (g sin(q1 + q2) dG2 m2)− g cos(q1 + q2) LG2 m2 + pmax mτ4(q2)

g (LL cos(q1 + q2) + dL sin(q1 + q2))
.

Figure 2.15 on page 30 shows the maximum load throughout the workspace, with
the results being presented in task space. Sometimes it is easier to look at the same
data in joint space, as is shown in �g. A.2.
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Figure A.2: Contour plot showing the maximum load (in kg) that the manipulator
can carry throughout its workspace (based on the same data as �g. 2.15).
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Dynamic Model

This appendix gives the expressions for the matrices used in the equation of motion
(3.1). Please refer to �g. 2.9 for the de�nition of the di�erent angles and distances.
m1 and m2 are the masses of both links, respectively, and IzG1 and IzG2 are their
moments of inertia (about axes perpendicular to the x− y plane (see �g. 2.9) and
through their respective centers of gravity G1 and G2). g denotes the gravitational
acceleration.

B.1 Equations of motion

Since there are two degrees of freedom, there are two equations of motion, which
can be written as follows using the Lagrange formulation:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi i = 1 . . . 2 (B.1)

In these equations, L = K − P, with K the total kinetic energy and P the total
potential energy. In the case of our manipulator, the τi are given by eq. (2.16).
The kinetic energy can be calculated by (with n = 2)

K =
1
2

n∑
i=1

(
miv

2
Gi + IzGiq̇

2
i

)
,

with vGi the velocity of the center of mass of link i. This results in

K =
1
2

(
q̇2
1

(
IzG1 +

(
dG1

2 + LG1
2
)
m1

)
+ (q̇1 + q̇2)2

IzG2+(
(q̇1 + q̇2)2

dG2
2 + q̇2

1L1
2 + (q̇1 + q̇2)2

LG2
2 + 2q̇1 (q̇1 + q̇2)L1 (sin(q2)dG2+

cos(q2)LG2))m2) .
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The gravitaional potential energy P is given by

P = m1g (LG1 sin q1 − dG1 cos q1)

+m2g (L1 sin q1 + LG2 sin (q1 + q2)− dG2 cos (q1 + q2)) .

With these expressions, the equations of motion can be determined using (B.1).

It is also possible to obtain the equations of motion immediately in the form of
eq. (3.1), i.e.

H (q) q̈ + C (q, q̇) q̇ +G (q) = τ .

The inertia matrix H (q) can be obtained from the following relation with the
kinetic energy (Spong et al., 2006):

K =
1
2
q̇TH (q) q̇.

Vector G (q) can be found from the gravitational potential energy,

gi (q) =
∂P
∂qi

with gi (q) the i-th component of G (q).
Matrix C (q, q̇) is not unique, a common choice for C (q, q̇) is given by

ck,j =
n∑
i=1

1
2

(
∂hk,j
∂qi

+
∂hk,i
∂qj

− ∂hi,j
∂qk

)
q̇i,

where ck,j indicates element (k, j) of matrix C (q, q̇), and similarly hk,j indicates
element (k, j) of H (q). Choosing C (q, q̇) as above assures that the matrix Ḣ (q)−
2C (q, q̇) is skew-symmetric (Spong et al., 2006). It also implies (De Luca et al.,
2006)

Ḣ (q) = C (q, q̇) + CT (q, q̇) , (B.2)

which can be seen as follows (using the symmetry of H (q), i.e. hk,j = hj,k):

ck,j + cj,k =
n∑
i=1

1
2

(
∂hk,j
∂qi

+
∂hk,i
∂qj

− ∂hi,j
∂qk

+
∂hj,k
∂qi

+
∂hj,i
∂qk

− ∂hi,k
∂qj

)
q̇i

=
n∑
i=1

1
2

(
∂hk,j
∂qi

+
∂hk,i
∂qj

− ∂hi,j
∂qk

+
∂hk,j
∂qi

+
∂hi,j
∂qk

− ∂hk,i
∂qj

)
q̇i

=
n∑
i=1

∂hk,j
∂qi

q̇i

= ḣk,j .
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This property will be used in section 5.4.2.2.

For the 2-DOF pneumatic manipulator, the inertia matrix H (q) is given by

H (q) =
[
h1,1 h1,2

h2,1 h2,2

]
(B.3)

with

h1,1 = IzG1 + IzG2 +
`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2

+
`
dG2

2 + L1
2 + LG2

2´ m2

h1,2 = h2,1

= IzG2 + sin(q2) dG2 L1m2 + cos(q2)L1 LG2 m2 +
`
dG2

2 + LG2
2´ m2

h2,2 = IzG2 +
`
dG2

2 + LG2
2´ m2.

Similarly, for C (q, q̇) we have

C (q, q̇) =
[
c1,1 c1,2
c2,1 c2,2

]
where (using ωi = q̇i)

c1,1 = L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2

c1,2 = L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω1 + L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2

c2,1 = L1 (− (cos(q2) dG2) + sin(q2)LG2) m2 ω1

c2,2 = 0

and G (q) is given by

G (q) =
[
g1

g2

]
with

g1 = g (sin(q1) dG1 m1 + sin(q1 + q2) dG2 m2 + cos(q1 + q2) LG2 m2

+ cos(q1) (LG1 m1 + L1m2))

g2 = g (sin(q1 + q2) dG2 + cos(q1 + q2) LG2) m2.

B.2 Adapted torque functions

In order to use eq. (3.9) as a model for muscle force, the de�nition of the torque
functions as given by (A.9)-(A.12) has to be slightly adapted. Since the parameters
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in (3.9) are estimated for a single muscle, eq. (3.9) no longer (explicitly) depends
on the slenderness l0/R, and neither does the torque function associated with the
muscle.

Using (3.10) and (3.11), and keeping in mind (2.9), the new de�nition of the
torque functions can be derived from (A.1)-(A.4) as

mτ1 (ε1 (q1)) =
[
ε−1 1 ε ε2 ε3

]
â1 · ((e1 ×OA12) · 1z)

mτ2 (ε2 (q1)) =
[
ε−1 1 ε ε2 ε3

]
â2 · ((e2 ×OA22) · 1z)

mτ3 (ε3 (q2)) =
[
ε−1 1 ε ε2 ε3

]
â3 · ((e3 × SA33) · 1z)

mτ4 (ε4 (q2)) =
[
ε−1 1 ε ε2 ε3

]
â4 · ((e4 × SA43) · 1z) ,

with âi the estimated muscle parameters of muscle i.

B.3 Equations of motion linear in the parameters

In this section the equations of motion are written in a form that is linear in the
parameters, which is useful for parameter estimation (see section 3.5).

In general, each link has 10 inertial parameters (its mass, 6 elements of the in-
ertia tensor and 3 coordinates of the center of mass). Not all of them in�uence
the dynamics, however (for example, since the system considered in this work is
constrained to the x − y plane, there are no rotations about the x and y axes, so
the moments of inertia around these axes don't matter). The ones that in�uence
joint torque (which is what will be measures to estimate the dynamic parameters)
can be identi�ed, but usually not individually.

As is well known, eq. (3.1) can be expressed in a form that is linear with respect
to a set of parameters θ (Khosla and Kanade, 1985; An et al., 1985; Nicolò and
Katende, 1983). In order to emphasize its dependence on θ, we write (3.1) as

H (q,θ) q̈ + C (q, q̇,θ) q̇ +G (q,θ) = τ .

The goal of this section is to determine a matrix K that allows us to write the
above equation as

K (q, q̇, q̈)θ = τ . (B.4)

We can write the moments of inertia of both links around axes perpendicular to
the x− y plane and through their hinge points as1

IzO,1 = IzG1 +m1

(
d2
G1

+ L2
G1

)
1This is an application of Steiner's theorem, also known as the parallel axis theorem (see for

instance Goodman and Warner (2001)).
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IzS,2 = IzG2 +m2

(
d2
G2

+ L2
G2

)
.

Then, following An et al. (1988) and keeping in mind the restriction to the x − y
plane, we could choose

θ =
[
m1 m1LG1 m1dG1 IzO,1 m2 m2LG2 m2dG2 IzS,2

]T
,

to be changed in

θ =
[
m1LG1 m1dG1 IzO,1 m2 m2LG2 m2dG2 IzS,2

]T
after observing that m1 doesn't appear (by itself) in the equations of motion. This
is the most straightforward and intuitive choice of parameters that appear linearly
in the equations of motion. It is not the optimal choice though, since it results in
a matrix K (q, q̇, q̈) that is not full rank.
In order to avoid this, θ was chosen as

θ =


m1LG1 +m2L1

m1dG1

IzO,1 +m2L
2
1

m2LG2

m2dG2

IzS,2

 , (B.5)

which results in the following observation matrix:

K (q, q̇, q̈) =

»
g cos(q1) g sin(q1) q̈1 g cos(q1 + q2) + (2q̈1 + q̈2) cos(q2)L1 − q̇2 (2q̇1 + q̇2) sin(q2)L1

0 0 0 g cos(q1 + q2) + q̈1 cos(q2)L1 + q̇21 sin(q2)L1
· · ·

· · · g sin(q1 + q2) + q̇2 (2q̇1 + q̇2) cos(q2)L1 + (2q̈1 + q̈2) sin(q2)L1 q̈1 + q̈2
g sin(q1 + q2)− q̇21 cos(q2)L1 + q̈1 sin(q2)L1 q̈1 + q̈2

–
.

Although in this case the parameter set θ was found by inspection of the equations
of motion, it should be noted that methods exist that allow such parameters sets
to be determined directly (Gautier and Khalil, 1990; Fisette et al., 1996). This is
especially useful for systems with more degrees of freedom than the one considered
here.

B.4 Filtered equations of motion linear in the pa-

rameters

The �ltering operation in the method by Slotine and Li (1991) (see 3.5.2.2 on page
51) leads to the following �ltered left-hand side of the equations of motion (repeated
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here from eq. (3.24)):

ωH (q) q̇+

t∫
0

f (t− r)
{
C (q, q̇) q̇ +G (q)− Ḣ (q) q̇

}
dr+

t∫
0

ḟ (t− r) {H (q) q̇} dr.

For this expression to be useful for identi�cation, we have to write H (q) q̇, Ḣ (q) q̇
and C (q, q̇) q̇ +G (q) as linear functions of θ (which is de�ned in eq. (B.5)). By
inspection of the expressions for H (q), C (q, q̇) and G (q) given above, we have

H (q) q̇ =

»
0 0 q̇1 2q̇1 cos(q2)L1 + q̇2 cos(q2)L1 2q̇1 sin(q2)L1 + q̇2 sin(q2)L1 q̇1 + q̇2

0 0 0 q̇1 cos(q2)L1 q̇1 sin(q2)L1 q̇1 + q̇2

–
θ

= W1 (q, q̇)θ,

Ḣ (q) q̇ =

»
0 0 0 −2q̇1q̇2 sin(q2)L1 − q̇2

2 sin(q2)L1 2q̇1q̇2 cos(q2)L1 + q̇2
2 cos(q2)L1 0

0 0 0 −q̇1q̇2 sin(q2)L1 q̇1q̇2 cos(q2)L1 0

–
θ

= W2 (q, q̇)θ

and

C (q, q̇) q̇+G (q) =

»
g cos(q1) g sin(q1) 0 g cos(q1 + q2)− 2q̇1q̇2 sin(q2)L1 − q̇2

2 sin(q2)L1

0 0 0 g cos(q1 + q2) + q̇2
1 sin(q2)L1

· · ·

· · · g sin(q1 + q2) + 2q̇1q̇2 cos(q2)L1 + q̇2
2 cos(q2)L1 0

g sin(q1 + q2)− q̇2
1 cos(q2)L1 0

–
θ

= W3 (q, q̇)θ,

with W1 (q, q̇), W2 (q, q̇) and W3 (q, q̇) de�ned by the above equations.

B.4.1 Friction

When incorporating the friction term (3.30) into the equations of motion, param-
eter vector θ has to be expanded to include the friction parameters:

θ =



m1LG1 +m2L1

m1dG1

IzO,1 +m2L
2
1

m2LG2

m2dG2

IzS,2
c1
c2
b1
b2


. (B.6)

The matrices Wi (q, q̇) of the �ltered model described above have to be slightly
changed: bothW1 (q, q̇) andW2 (q, q̇) simply get a 2 by 4 matrix of zeros appended
on the right-hand side, while W3 (q, q̇), which is now de�ned by

C (q, q̇) q̇ +G (q) + τ f (q̇) = W3 (q, q̇)θ,
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becomes

W3 (q, q̇) =

»
g cos(q1) g sin(q1) 0 g cos(q1 + q2)− 2q̇1q̇2 sin(q2)L1 − q̇2

2 sin(q2)L1

0 0 0 g cos(q1 + q2) + q̇2
1 sin(q2)L1

· · ·

· · · g sin(q1 + q2) + 2q̇1q̇2 cos(q2)L1 + q̇2
2 cos(q2)L1 0 sgn (q̇1) 0 q̇1 0

g sin(q1 + q2)− q̇2
1 cos(q2)L1 0 0 sgn (q̇2) 0 q̇2

–
.

Since it is used in section 5.4.2.2, we also show W4 (q, q̇) here, which is de�ned by
(cf. eq. (5.55))

W4 (q, q̇)θ = CT (q, q̇) q̇ −G (q)− τ f (q̇) .

The matrix is given by

W4 (q, q̇) =

»
−g cos(q1) −g sin(q1) 0 −g cos(q1 + q2)

0 0 0 −g cos(q1 + q2)− q̇2
1 sin(q2)L1 − q̇1q̇2 sin(q2)L1

· · ·

· · · −g sin(q1 + q2) 0 − sgn(q̇1) 0 −q̇1 0
q̇2
1 cos(q2)L1 + q̇1q̇2 cos(q2)L1 − g sin(q1 + q2) 0 0 − sgn(q̇2) 0 −q̇2

–
.

B.5 Filtered observation matrix

If N measurements are taken, some precautions have to be taken before they are
combined together in a single matrix, due to the �ltering.

If we write w(k)
1 to indicate the k'th row of matrix W1, and w

(k)
1,j to indicate this

row as measured in the j'th measurement (and similarly for the other matrices),
we form the matrices

W̃i,(k) =


w

(k)
i,1

w
(k)
i,2
...

w
(k)
i,N

 ,
with i going from 1 to 3 (i.e. we combine the rows of matricesW1,W2 andW3) and
k going from 1 to 2 (since all theWi have two rows). In case ofW1, for example, we
combine the �rst row of all N measured matricesW1,j together to form W̃1,(1), and
similarly combine the second row of all these matrices to form W̃1,(2). Similarly,
we combine the �rst rows of all N measured torque vectorsτ j to form matrix τ̃(1),
and the second rows to form τ̃(2).

Two parts of the �ltered observation matrix are then calculated using (3.26):

K̃ ′f,(k) =
(
ωW̃1,(k)(q, q̇)+

〈
W̃3,(k)(q, q̇)− W̃2,(k)(q, q̇)

〉
F (s)

+
〈
W̃1,(k)(q, q̇)

〉
F2(s)

)
,

with k = 1 . . . 2. The �ltering operations are interpreted to apply to the individual
columns of the matrices. Similarly, we have

τ̃ ′f,(k) =
〈
τ̃(k)

〉
F (s)

.
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Parameter Muscle number Units
1 2 3 4

a0 8.16906 62.7708 28.2623 8.15986 N/bar
a1 295.069 −671.791 −16.2374 174.709 N/bar
a2 −1586.59 5792.52 678.514 −490.279 N/bar
a3 3623.1 −20984.8 −3595.7 −1182.38 N/bar
a4 −5728.79 24787.8 3216.48 1905.53 N/bar

Table B.1: Estimated parameters of muscle model (3.10). 1 bar equals 100 kPa.

Parameter Valve number Units
1 2 3 4

v1 0.0447 0.0097 0.0314 0.0078 bar
v2 0.9933 0.9939 0.9975 0.9736 (dimensionless)

Table B.2: Estimated parameters of static valve model (3.12).

Since the �ltering operations cause transients (which we don't want to include for
the identi�cation), we discard the �rst R rows of K̃ ′f,(k) and τ̃

′
f,(k). The resulting

matrices and vectors are given the same name, but without the accent (e.g. after
dropping the �rst R rows of K̃ ′f,(1), we call it K̃f,(1)). Finally, we can set

K̃f =
[
K̃f,(1)

K̃f,(2)

]
, (B.7)

τ̃f =
[
τ̃f,(1)

τ̃f,(2)

]
and write the system to be solved as

K̃fθ = τ̃f .

K̃f and τ̃f thus have 2 (N −R) rows. The value of R was chosen to be 300.

B.6 Results of the static estimation

Table 3.1 lists the parameter values of the staical mechanical model that were
estimated using the static estimation procedures. The other parameters that were
estimated with data from the experiment described in section 3.5.1.4 (page 47) are
shown in tables B.1 and B.2.
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Feedback Linearization

C.1 Matrices

Expressions for H (q), C (q, q̇) and G (q) as they appear in eq. (3.1) are given in
appendix B. Eq. (4.21) in chapter 4, however, contains the matrices A = H−1C
and H−1, as well as vector B = H−1G. Expressions for A, B and H−1 are given
in this section.

For the inverse of the inertia matrix H (given in eq. (B.3)) we have

H−1 =
[
h−1

1,1 h−1
1,2

h−1
2,1 h−1

2,2

]
with

h−1
1,1 =

1

|H|
`
IzG2 +

`
dG2

2 + LG2
2´ m2

´
h−1

1,2 = h−1
2,1

=
1

|H|
`
−IzG2 − sin(q2) dG2 L1m2 − cos(q2)L1 LG2 m2 −

`
dG2

2 + LG2
2´ m2

´
h−1

2,2 =
1

|H|
`
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2

+
`
dG2

2 + L1
2 + LG2

2´ m2

´
.

The determinant |H| used in these expressions is given by

|H| = −
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´
.

179
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Matrix A = H−1C is given by (using ωi = q̇i)

A =
[
a1,1 a1,2

a2,1 a2,2

]
where

a1,1 =
1

|H|
`
L1

`
cos(q2) dG2 − sin(q2) LG2

´
m2

`
sin(q2) dG2 L1 m2 ω1 + cos(q2) L1 LG2 m2 ω1

+
`
IzG2 +

`
dG2

2 + LG2
2
´

m2

´
(ω1 + ω2)

´´
a1,2 =

1

|H|
`
L1

`
cos(q2) dG2 − sin(q2) LG2

´
m2

`
IzG2 +

`
dG2

2 + LG2
2
´

m2

´
(ω1 + ω2)

´
a2,1 =

1

|H|
`
−
`
L1

`
cos(q2) dG2 − sin(q2) LG2

´
m2

``
IzG1 + IzG2 +

`
dG1

2 + LG1
2
´

m1+

2 L1

`
sin(q2) dG2 + cos(q2) LG2

´
m2 +

`
dG2

2 + L1
2 + LG2

2
´

m2

´
ω1+`

IzG2 + sin(q2) dG2 L1 m2 + cos(q2) L1 LG2 m2 +
`
dG2

2 + LG2
2
´

m2

´
ω2

´´´
a2,2 =

1

|H|
`
−
`
L1

`
cos(q2) dG2 − sin(q2) LG2

´
m2

`
IzG2 + sin(q2) dG2 L1 m2+

cos(q2) L1 LG2 m2 +
`
dG2

2 + LG2
2
´

m2

´
(ω1 + ω2)

´´
,

and for B = H−1G we have

B =
[
b1
b2

]
with

b1 =
1

|H| (g (− ((sin(q1 + q2) dG2 + cos(q1 + q2)LG2) m2 (IzG2 + sin(q2) dG2 L1m2

+cos(q2)L1 LG2 m2 +
`
dG2

2 + LG2
2´ m2

´´
+`

IzG2 +
`
dG2

2 + LG2
2´ m2

´
(sin(q1) dG1 m1 + sin(q1 + q2) dG2 m2+

cos(q1 + q2)LG2 m2 + cos(q1) (LG1 m1 + L1m2))))

b2 =
1

|H|
`
g
`
(sin(q1 + q2) dG2 + cos(q1 + q2)LG2) m2

`
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1

+2L1 (sin(q2) dG2 + cos(q2)LG2) m2 +
`
dG2

2 + L1
2 + LG2

2´ m2

´
−`

IzG2 + sin(q2) dG2 L1m2 + cos(q2)L1 LG2 m2 +
`
dG2

2 + LG2
2´ m2

´
·

(sin(q1) dG1 m1 + sin(q1 + q2) dG2 m2 + cos(q1 + q2)LG2 m2

+cos(q1) (LG1 m1 + L1m2)))) .
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C.2 Coordinate transformation

This appendix provides the details about the coordinate transformations (4.27)-
(4.30). With x1 = [q1 ω1 p1 p2]T and x2 = [q2 ω2 p3 p4]T , we have

ξ11 = h1 (x1) = q1

ξ12 = Lf1h1 (x1) = ω1

ξ13 = L2
f1h1 (x1)

=
`
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+
`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´
·
`
IzG2 +

`
dG2

2 + LG2
2´ m2

´´−1 ·
`
−
``

IzG2 +
`
dG2

2 + LG2
2´ m2

´
·

(g sin(q1 + q2) dG2 m2 + g (sin(q1) dG1 m1 + cos(q1)LG1 m1 + cos(q1)L1m2

+cos(q1 + q2)LG2 m2) + L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2 (2ω1 + ω2)

−p1mτ1(q1)− p2mτ2(q1)))− (IzG2 + sin(q2) dG2 L1m2 + cos(q2)L1 LG2 m2

+
`
dG2

2 + LG2
2´ m2

´
(− (m2 (g sin(q1 + q2) dG2 + g cos(q1 + q2)LG2

+L1 (− (cos(q2) dG2) + sin(q2)LG2) ω1
2´´+ p3mτ3(q2) + p4mτ4(q2)

´´
η1 = p1 T1 + p2 T2

and

ξ21 = h2 (x2) = q2

ξ22 = Lf2h2 (x2) = ω2

ξ23 = L2
f2h2 (x2)

=
`
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+
`
IzG1 +

`
dG1

2 + LG1
2´ m1+

L1
2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´−1 · ((IzG2 + sin(q2) dG2 L1m2+

cos(q2)L1 LG2 m2 +
`
dG2

2 + LG2
2´ m2

´
(g sin(q1 + q2) dG2 m2+

g (sin(q1) dG1 m1 + cos(q1)LG1 m1 + cos(q1)L1m2 + cos(q1 + q2)LG2 m2)+

L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2 (2ω1 + ω2)− p1mτ1(q1)− p2mτ2(q1))+`
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2+`

dG2
2 + L1

2 + LG2
2´ m2

´
(− (m2 (g sin(q1 + q2) dG2 + g cos(q1 + q2)LG2+

L1 (− (cos(q2) dG2) + sin(q2)LG2) ω1
2´´+ p3mτ3(q2) + p4mτ4(q2)

´´
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η2 = p3 T3 + p4 T4.

With φi =
[
hi (xi) Lfihi (xi) L2

fi
hi (xi) ηi

]T
= [ξi1 ξi2 ξi3 ηi]

T the determinant

of the Jacobian matrix ∂φi
∂xi

of both transformations becomes˛̨̨̨
∂φ1

∂x1

˛̨̨̨
=

`
−IzG2 −

`
dG2

2 + LG2
2´ m2

´
· (− (T2mτ1(q1)) + T1mτ2(q1))

·
`
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´−1

˛̨̨̨
∂φ2

∂x2

˛̨̨̨
=

`
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2

+
`
dG2

2 + L1
2 + LG2

2´ m2

´
· (T4mτ3(q2)− T3mτ4(q2))

·
`
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+ (IzG1+`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´−1
.

As can be seen in �g. 2.11, we have mτ1 > 0, mτ2 < 0, mτ3 > 0 and mτ4 < 4
in the entire manipulator working area (π9 ≤ q1 ≤ 7π

12 , − 13π
18 ≤ q2 ≤ −π6 ). Since

the time constants Ti are always positive, this means that both Jacobian matrices
are nonsingular, and the coordinate transformations φ1 and φ2 are di�eomorphic
within the working area. The inverse transformations φ−1

i are given by

q1 = ξ11

ω1 = ξ12

p1 =
`
−
`
T2

``
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1 +

`
dG2

2 + L1
2 + LG2

2´ m2

´
ξ13+`

IzG2 +
`
dG2

2 + LG2
2´ m2

´
ξ23
´´

+ T2 (− (g sin(ξ11) dG1 m1)−

g cos(ξ11) (LG1 m1 + sin(ξ21) dG2 m2 + L1m2 + cos(ξ21)LG2 m2)+

sin(ξ21)m2 (g sin(ξ11)LG2 + L1 (LG2 ξ22 (2 ξ12 + ξ22) + dG2 (−2 ξ13 − ξ23)))−

cos(ξ21)m2 (g sin(ξ11) dG2 + L1 (dG2 ξ22 (2 ξ12 + ξ22) + LG2 (2 ξ13 + ξ23))))+

η1mτ2(ξ11)) · (− (T2mτ1(ξ11)) + T1mτ2(ξ11))
−1

p2 =
− (p1 T1) + η1

T2

and

q2 = ξ21
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ω2 = ξ22

p3 =
`
−
`
m2 T4

`
g sin(ξ11 + ξ21) dG2 + g cos(ξ11 + ξ21)LG2 + sin(ξ21)L1

`
LG2 ξ12

2+

dG2 ξ13) + cos(ξ21)L1

`
−
`
dG2 ξ12

2´+ LG2 ξ13
´´´
−`

IzG2 +
`
dG2

2 + LG2
2´ m2

´
T4 (ξ13 + ξ23) + η2mτ4(ξ21)

´
· (− (T4mτ3(ξ21)) + T3mτ4(ξ21))

−1

p4 =
− (p3 T3) + η2

T4
.

The coe�cients ai, bi and ri (see eq. (4.33)-(4.34)) are given by

a1 = Lg1L
2
f1h1 (x1)

=
`
−
``

IzG2 +
`
dG2

2 + LG2
2´ m2

´
(− (T2mτ1(q1)) + T1mτ2(q1))

´´
·
``
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
T1 T2

´−1

b1 = L3
f1h1 (x1)

= (2L1 (cos(q2) dG2 − sin(q2)LG2) m2 (L1 (sin(q2) dG2 + cos(q2)LG2) m2 ω1+`
IzG2 +

`
dG2

2 + LG2
2´ m2

´
(ω1 + ω2)

´ ``
IzG2 +

`
dG2

2 + LG2
2´ m2

´
· (g sin(q1 + q2) dG2 m2 + g (sin(q1) dG1 m1 + cos(q1 + q2)LG2 m2+

cos(q1) (LG1 m1 + L1m2)) + L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2 (2ω1 + ω2)−

p1mτ1(q1)− p2mτ2(q1)) + (IzG2 + sin(q2) dG2 L1m2 + cos(q2)L1 LG2 m2+`
dG2

2 + LG2
2´ m2

´
(− (m2 (g sin(q1 + q2) dG2 + g cos(q1 + q2)LG2+

L1 (− (cos(q2) dG2) + sin(q2)LG2) ω1
2´´+ p3mτ3(q2) + p4mτ4(q2)

´´
−`

−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+
`
IzG1 +

`
dG1

2 + LG1
2´ m1+

L1
2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
ω1 (− (g (cos(q1 + q2) dG2−

sin(q1 + q2)LG2) m2 (IzG2 + sin(q2) dG2 L1m2 + cos(q2)L1 LG2 m2+`
dG2

2 + LG2
2´ m2

´´
−
`
IzG2 +

`
dG2

2 + LG2
2´ m2

´
(g (− (cos(q1) dG1 m1)−

cos(q1 + q2) dG2 m2 + sin(q1 + q2)LG2 m2 + sin(q1) (LG1 m1 + L1m2))+

p1 (mτ1 )′(q1) + p2 (mτ2 )′(q1)
´´

+
`
IzG2 +

`
dG2

2 + LG2
2´ m2

´
·
`
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+
`
IzG1 +

`
dG1

2 + LG1
2´ m1+
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L1
2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
mτ1(q1)

·
„
−p1 + pm

T1
− n (patm + p1) ω1 (V1)

′(q1)

V1(q1)

«
+
`
IzG2 +

`
dG2

2 + LG2
2´ m2

´
·
`
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+
`
IzG1 +

`
dG1

2 + LG1
2´ m1+

L1
2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
mτ2(q1)

·
„
−p2 + pm

T2
− n (patm + p2) ω1 (V2)

′(q1)

V2(q1)

««
·
``
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´2”−1

r1 = Lf1η1 (x1)

= −
`
−2 pm V1(q1)V2(q1) + nPatm T1 ω1 V2(q1) (V1)

′(q1)+

p1 V2(q1)
`
V1(q1) + nT1 ω1 (V1)

′(q1)
´

+ nPatm T2 ω1 V1(q1) (V2)
′(q1)+

p2 V1(q1)
`
V2(q1) + nT2 ω1 (V2)

′(q1)
´´
· (V1(q1)V2(q1))

−1

and

a2 = Lg2L
2
f2h2 (x2)

=
``

IzG1 + IzG2 +
`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2+`

dG2
2 + L1

2 + LG2
2´ m2

´
(T4mτ3(q2)− T3mτ4(q2))

´
·
``
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
T3 T4

´−1

b2 = L3
f2h2 (x2)

= (2L1 (cos(q2) dG2 − sin(q2)LG2) m2 (IzG2 + sin(q2) dG2 L1m2+

cos(q2)L1 LG2 m2 +
`
dG2

2 + LG2
2´ m2

´
(ω1 + ω2) ((IzG2 + sin(q2) dG2 L1m2+

cos(q2)L1 LG2 m2 +
`
dG2

2 + LG2
2´ m2

´
(g sin(q1 + q2) dG2 m2+

g (sin(q1) dG1 m1 + cos(q1 + q2)LG2 m2 + cos(q1) (LG1 m1 + L1m2))+

L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2 (2ω1 + ω2)− p1mτ1(q1)− p2mτ2(q1))+`
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2+
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`
dG2

2 + L1
2 + LG2

2´ m2

´
(− (m2 (g sin(q1 + q2) dG2 + g cos(q1 + q2)LG2+

L1 (− (cos(q2) dG2) + sin(q2)LG2) ω1
2´´+ p3mτ3(q2) + p4mτ4(q2)

´´
+

ω2

`
2L1

2 (sin(q2) dG2 + cos(q2)LG2) (cos(q2) dG2 − sin(q2)LG2)

·m2
2 ``IzG2 + sin(q2) dG2 L1m2 + cos(q2)L1 LG2 m2 +

`
dG2

2 + LG2
2´ m2

´
· (g sin(q1 + q2) dG2 m2 + g (sin(q1) dG1 m1 + cos(q1 + q2)LG2 m2+

cos(q1) (LG1 m1 + L1m2)) + L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2 (2ω1 + ω2)−

p1mτ1(q1)− p2mτ2(q1)) +
`
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1+

2L1 (sin(q2) dG2 + cos(q2)LG2) m2 +
`
dG2

2 + L1
2 + LG2

2´ m2

´
· (− (m2 (g sin(q1 + q2) dG2 + g cos(q1 + q2)LG2 + L1 (− (cos(q2) dG2)+

sin(q2)LG2) ω1
2´´+ p3mτ3(q2) + p4mτ4(q2)

´´
+`

−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+
`
IzG1 +

`
dG1

2 + LG1
2´ m1+

L1
2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
(m2 (IzG2 + sin(q2) dG2 L1m2+

cos(q2)L1 LG2 m2 +
`
dG2

2 + LG2
2´ m2

´
(g cos(q1 + q2) dG2 − g sin(q1 + q2)LG2−

L1 (sin(q2) dG2 + cos(q2)LG2) ω2 (2ω1 + ω2)) + L1 (cos(q2) dG2−

sin(q2)LG2) m2 (g sin(q1 + q2) dG2 m2 + g (sin(q1) dG1 m1 + cos(q1 + q2)LG2 m2+

cos(q1) (LG1 m1 + L1m2)) + L1 (cos(q2) dG2 − sin(q2)LG2) m2 ω2 (2ω1 + ω2)−

p1mτ1(q1)− p2mτ2(q1)) + 2L1 (cos(q2) dG2 − sin(q2)LG2)

·m2 (− (m2 (g sin(q1 + q2) dG2 + g cos(q1 + q2)LG2+

L1 (− (cos(q2) dG2) + sin(q2)LG2) ω1
2´´+ p3mτ3(q2) + p4mτ4(q2)

´
+`

IzG1 + IzG2 +
`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2+`

dG2
2 + L1

2 + LG2
2´ m2

´
(− (m2 (g cos(q1 + q2) dG2 − g sin(q1 + q2)LG2+

L1 (sin(q2) dG2 + cos(q2)LG2) ω1
2´´+ p3 (mτ3 )′(q2) + p4 (mτ4 )′(q2)

´´´
−``

IzG1 + IzG2 +
`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2+`

dG2
2 + L1

2 + LG2
2´ m2

´ `
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
mτ3(q2)

·
`
(p3 − pm) V3(q2) + n (p3 + Patm) T3 ω2 (V3)

′(q2)
´´
· (T3 V3(q2))

−1−
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``
IzG1 + IzG2 +

`
dG1

2 + LG1
2´ m1 + 2L1 (sin(q2) dG2 + cos(q2)LG2) m2+`

dG2
2 + L1

2 + LG2
2´ m2

´ `
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´
mτ4(q2)

·
`
(p4 − pm) V4(q2) + n (p4 + Patm) T4 ω2 (V4)

′(q2)
´´
· (T4 V4(q2))

−1´
·
``
−
`
L1

2 (sin(q2) dG2 + cos(q2)LG2)
2m2

2´+`
IzG1 +

`
dG1

2 + LG1
2´ m1 + L1

2m2

´ `
IzG2 +

`
dG2

2 + LG2
2´ m2

´´2”−1

r2 = Lf2η2 (x2)

= −
`
−2 pm V3(q2)V4(q2) + nPatm T3 ω2 V4(q2) (V3)

′(q2) + p3 V4(q2) (V3(q2)+

nT3 ω2 (V3)
′(q2)

´
+ nPatm T4 ω2 V3(q2) (V4)

′(q2) + p4 V3(q2) (V4(q2)+

nT4 ω2 (V4)
′(q2)

´´
· (V3(q2)V4(q2))

−1

where ′ stands for derivative (for instance V ′1 (q1) = dV1(q1)
dq1

).

It was numerically veri�ed that a1 and a2 stay far away from zero in the entire
working area (π9 ≤ q1 ≤ 7π

12 , − 13π
18 ≤ q2 ≤ −π6 ), so the strict relative degree (see

eqs. (4.25)-(4.26)) of both SISO systems is always de�ned.

In the expressions above, ai, bi and ri are expressed as functions of the state
vectors xi. If desired, they can be expressed in terms of the new coordinates ξij , ηi
by using the inverse transformations φ−1

i . If we do this for r1 and r2, while setting
all ξij to zero, (4.34) gives the zero dynamics (Sastry, 1999) of both systems:

η̇1 = r1 (0, η1)

=
−2mτ2(0)pmT1 + 2mτ1(0)pmT2 + g (LG1m1 + (L1 + LG2)m2) (T1 − T2)

T2mτ1(0)− T1mτ2(0)

− mτ1(0)−mτ2(0)
T2mτ1(0)− T1mτ2(0)

η1

= α1 − β1η1

η̇2 = r2 (0, η2)

=
−2mτ4(0)pmT3 + 2mτ3(0)pmT4 + gLG2m2 (T3 − T4)

T4mτ3(0)− T3mτ4(0)

− mτ3(0)−mτ4(0)
T4mτ3(0)− T3mτ4(0)

η2
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= α2 − β2η2,

where αi and βi are de�ned by the above equations. We see that the zero dynamics
is linear, and stable if βi > 0, which is always the case sincemτ1(0) > 0,mτ2(0) < 0,
mτ3(0) > 0, mτ4(0) < 0 and all Ti > 0. Both SISO systems are thus minimum
phase.
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Appendix D

Proxy-Based Sliding Mode Control

D.1 Signum function and unit saturation function

In this section, theorem 1 from Kikuuwe and Fujimoto (2006) is reproduced. It is
based on de�nition (5.1) of the sgn (·) function, which is repeated here for conve-
nience:

sgn (x)


= 1 if x > 0
∈ [−1, 1] if x = 0
= −1 if x < 0.

(D.1)

Theorem 1 (Kikuuwe and Fujimoto, 2006). With two real numbers x and y, the
following statement holds true:

y = sgn (x− y) ⇐⇒ y = sat (x) , (D.2)

where sat (·) is the unit saturation function, which is de�ned as

sat (x) =

{
x if |x| ≤ 1
sgn (x) if |x| > 1.

(D.3)

Proof. The statement y = sgn (x− y) is equivalent to

(y = 1 ∧ x− y > 0) ∨ (y ∈ [−1, 1] ∧ x− y = 0) ∨ (y = −1 ∧ x− y < 0) . (D.4)

Each term in (D.4) can be rewritten as follows:

(y = 1 ∧ x− y > 0) ⇐⇒ (y = 1 ∧ x > 1)

(y ∈ [−1, 1] ∧ x− y = 0) ⇐⇒ (y = x ∧ x ∈ [−1, 1])

(y = −1 ∧ x− y < 0) ⇐⇒ (y = −1 ∧ x < −1) .

189
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Therefore, (D.4) is equivalent to y = sat (x). This means that y = sgn (x− y) is
equivalent to y = sat (x).

In order to use the above in a multi-input, multi-output case, we need a vectorial
version of (D.2), i.e.

y = sgn (x− y) ⇐⇒ y = sat (x) . (D.5)

It is clear that the above doesn't hold when using the most straightforward vectorial
de�nition of the signum function, sgn (x) =

[
sgn (x1) · · · sgn (xn)

]T
with

x =
[
x1 · · · xn

]T
(which is used in for instance Slotine and Li (1991)), since it

doesn't conserve direction. In order to see how sgn (·) and sat (·) can be generalized,
we can rewrite (D.1) as follows:

sgn (x) =

{
= x/ |x| if x 6= 0
∈ [−1, 1] if x = 0.

sat (x) can then be written as

sat (x) =

{
x if |x| ≤ 1
x/ |x| if |x| > 1.

From these de�nitions, it is more straightforward to generalize them as (with x ∈
Rn)

sgn (x) =

{
= x/ ‖x‖ if x 6= 0
∈ {e ∈ Rn| ‖e‖ ≤ 1} if x = 0

(D.6)

and

sat (x) =

{
x if ‖x‖ ≤ 1
x/ ‖x‖ if ‖x‖ > 1.

(D.7)

Using these de�nitions (D.5) holds, as is shown in Kikuuwe et al. (2006).

D.2 Massless proxy

In proxy-based sliding mode control, the proxy is assumed to be massless. In this
section, we will brie�y look into some of the e�ects of having a massless proxy.

Let's �rst assume that there is no integral component in the virtual coupling, and
that the sliding mode controller is absent (i.e. F a = 0). The equations of motion
of the proxy then simplify to (using (5.11) and (5.6))

mr̈p = −Kp (rp − r)−Kd (ṙp − ṙ) . (D.8)
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If n is the dimension of the vectors used in the above equation (i.e. n = 1, 2 or 3),
the order of the proxy's dynamics is 2n. If we set the proxy mass m to zero, eq.
(D.8) can be rewritten as

ṙp = −Kp

Kd
(rp − r) + ṙ. (D.9)

By assuming a massless proxy, the order of the system has been reduced by n
and the velocity vector ṙp is no longer part of the proxy's state. Since there is
no coupling between components, the above system is equivalent to n uncoupled
�rst-order systems.

In the general case (i.e. with the sliding mode controller and with a PID-type
virtual coupling) the virtual coupling has an integral part, which means it has its
own state. This state was written in eq. (5.7) as

a =
∫

(rp − r) dt.

Both F a and F c can be expressed as a function of a and its derivatives, as in eqs.
(5.10) and (5.8), so the equations of motion of the proxy can be written as (see eq.
(5.11))

mr̈p = F a (r, ṙ, ȧ, ä)− F c (r, ṙ,a, ȧ, ä) .

By setting

x1 = a

=
∫

(rp − r) dt

x2 = ȧ

= rp − r
x3 = ä

= ṙp − ṙ
we can write the dynamic equations of the proxy-virtual coupling system in state
space form:

ẋ1 = x2

ẋ2 = x3

mẋ3 = F a (r, ṙ,x2,x3)− F c (r, ṙ,x1,x2,x3)−mr̈.
The order of this system is 3n (2n states belonging the proxy and n states to the
virtual coupling). If we set the proxy mass m equal to zero, the system reduces to

ẋ1 = x2 (D.10)
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F a (r, ṙ,x2, ẋ2) = F c (r, ṙ,x1,x2, ẋ2) (D.11)

Since eq. (D.11) implicitly de�nes ẋ2, it determines the dynamics of the proxy. If
needed, ẋ2 can be isolated using the procedure used in section 5.2.5.

Eqs. (D.10)-(D.11) show some of the consequences of considering a massless proxy:

� The order of the proxy-virtual coupling system is reduced by n.

� The proxy is always in force-equilibrium, which means the sliding mode force
F a is always balanced by the force F c resulting from the virtual coupling.

� The force-equilibrium constraint directly determines the dynamics of the
proxy, since it (implicitly) de�nes ẋ2.

� The behavior of the massless proxy cannot easily be determined by numerical
integration of eqs. (D.10)-(D.11), due to the di�culty in isolating ẋ2.

D.3 Discrete-time controller equations

This section presents the detailed calculations of how to solve eqs. (5.19)-(5.20) for
f [k] and a [k]. For easier reference, (5.19)-(5.20) are repeated here:

f [k] = F sgn
(
σ [k]− ∇a [k]

T
− λ∇

2a [k]
T 2

)
(D.12)

f [k] = Kp
∇a [k]
T

+Kia [k] +Kd
∇2a [k]
T 2

. (D.13)

We start by using eqs. (5.17) and (5.18) to rewrite (D.13) as

f [k] =
Kp

T
a [k]− Kp

T
a [k − 1] +Kia [k] +

Kd

T 2
(∇a [k]−∇a [k − 1])

= a [k]
(
Kp

T
+Ki

)
− Kp

T
a [k − 1] +

Kd

T 2
a [k]− Kd

T 2
a [k − 1]

−Kd

T 2
∇a [k − 1]

= a [k]
(
Kp

T
+Ki +

Kd

T 2

)
− a [k − 1]

(
Kp

T
+
Kd

T 2

)
− Kd

T 2
∇a [k − 1]

= a [k]
KiT

2 +KpT +Kd

T 2
− a [k − 1]

KpT +Kd

T 2
− Kd

T 2
∇a [k − 1] .

a [k] can now be written as a function of f [k] and past values of a:

a [k] =
T 2

KiT 2 +KpT +Kd

(
f [k] + a [k − 1]

KpT +Kd

T 2
+
Kd

T 2
∇a [k − 1]

)
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=
a [k − 1] (KpT +Kd) +Kd∇a [k − 1] + T 2f [k]

KiT 2 +KpT +Kd
(D.14)

By rewriting (D.12) using (5.17) and (5.18) we get

f [k] = F sgn
(
σ [k]− 1

T
a [k] +

1
T
a [k − 1]− λ

T 2
(∇a [k]−∇a [k − 1])

)

= F sgn
(
σ [k]− 1

T
a [k] +

1
T
a [k − 1]− λ

T 2
(a [k]− a [k − 1]−∇a [k − 1])

)

= F sgn
(
σ [k]− T + λ

T 2
a [k] +

T + λ

T 2
a [k − 1] +

λ

T 2
∇a [k − 1]

)
.

Substitution of (D.14) gives

f [k] = F sgn
(
σ [k] +

T + λ

T 2
a [k − 1] +

λ

T 2
∇a [k − 1]

−T + λ

T 2
· a [k − 1] (KpT +Kd) +Kd∇a [k − 1] + T 2f [k]

KiT 2 +KpT +Kd

)
.(D.15)

We see that f [k] appears on both sides in this equation. In order to solve for f [k],
(D.5) can be used if we rewrite (D.15) as f [k] = F sgn (f∗ [k]− f [k]):

f [k] = F sgn
(
σ [k] +

T + λ

T 2
a [k − 1] +

λ

T 2
∇a [k − 1]

− (T + λ) (KpT +Kd)
T 2 (KiT 2 +KpT +Kd)

a [k − 1]− (T + λ)Kd

T 2 (KiT 2 +KpT +Kd)
∇a [k − 1]

− T + λ

KiT 2 +KpT +Kd
f [k]

)

= F sgn
(

T + λ

KiT 2 +KpT +Kd

(
KiT

2 +KpT +Kd

T + λ
σ [k]

+
KiT

2 +KpT +Kd

T 2
a [k − 1] +

λ
(
KiT

2 +KpT +Kd

)
T 2 (T + λ)

∇a [k − 1]

−KpT +Kd

T 2
a [k − 1]− Kd

T 2
∇a [k − 1]− f [k]

))

= F sgn
(

T + λ

KiT 2 +KpT +Kd

(
KiT

2 +KpT +Kd

T + λ
σ [k] +Kia [k − 1]

+
λ
(
KiT

2 +KpT +Kd

)−Kd (T + λ)
T 2 (T + λ)

∇a [k − 1]− f [k]

))
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= F sgn
(

T + λ

KiT 2 +KpT +Kd

(
KiT

2 +KpT +Kd

T + λ
σ [k] +Kia [k − 1]

+
λ (KiT +Kp)−Kd

T (T + λ)
∇a [k − 1]− f [k]

))

= F sgn
(

T + λ

KiT 2 +KpT +Kd
(f∗ [k]− f [k])

)
, (D.16)

with

f∗ [k] =
KiT

2 +KpT +Kd

T + λ
σ [k] +Kia [k − 1] +

λ (KiT +Kp)−Kd

T (T + λ)
∇a [k − 1] .

(D.17)
Since

T + λ

KiT 2 +KpT +Kd
> 0

(D.16) is equivalent to

f [k] = F sgn (f∗ [k]− f [k]) , (D.18)

where f∗ [k] only depends on past values of the state a and on measured and known
quantities (through σ [k], see eq. (5.21)), and can thus easily be calculated.

Since F > 0, (D.18) implies

f [k]
F

= sgn (f∗ [k]− f [k])

= sgn
(
f∗ [k]
F
− f [k]

F

)
.

Because of (D.5) and (D.7) this becomes

f [k] = F sat
(
f∗ [k]
F

)

=

{
f∗ [k] if ‖f∗ [k]‖ ≤ F
F f∗[k]
‖f∗[k]‖ if ‖f∗ [k]‖ > F.

(D.19)

In order to calculate the PSMC controller's output f [k] at timestep k, we �rst
calculate σ [k] from (5.21). Knowing σ [k] and the state variable a at the previous
two timesteps (i.e. a [k − 1] and a [k − 2]), we can determine f∗ [k] from (D.17).
Output f [k] is then calculated from (D.19). Once f [k] is known, state a [k] (which
will be necessary in the next timestep) can be found from eq. (D.14).

By comparing (D.16) with (5.4), we see that s [k] is given by

s [k] =
T + λ

KiT 2 +KpT +Kd
(f∗ [k]− f [k]) . (D.20)
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If s [k] = 0 the proxy is said to be �on its sliding surface� (see also the next section).
According to (D.20) this is the case if f∗ [k] = f [k]. From (D.19), we see that the
proxy is on the sliding surface if

‖f∗ [k]‖ ≤ F.

D.4 The proxy in state-space

The goal of sliding mode control is to impose a certain dynamics (as described by
the sliding surface) onto the controlled system. If we restrict ourselves to the single-
input single-output (SISO) case, then the imposed dynamics usually has order n−1
if the system has order n (Slotine and Li, 1991). This was the case in the example
of section 4.2.1, for instance. It was also the case for the �heavy�1 proxy of section
5.2.3.

In the one-dimensional case (when the system to be controlled is a 1-DOF SISO
system, for instance), the equation of motion of the proxy (5.11) can be written as

mẍp = Fa − Fc.

The (heavy) proxy dynamics is thus described by a second order system. The state
vector can be chosen as x =

[
xp ẋp

]
. The dynamics imposed by the sliding

mode controller, s (x, t) = 0 with s (x, t) given by

s (x, t) = (xd − xp) + λ (ẋd − ẋp) ,

is �rst order. s (x, t) = 0 de�nes a (one-dimensional) line in the (two-dimensional)
state-space.

In section D.2, we saw that the order of the proxy's dynamics decreases when its
mass is set to zero. For the one-dimensional case considered here, this means that
the proxy's dynamics become �rst order2, de�ned by Fa (ẋp) = Fc (ẋp). Since the
velocity ẋp is no longer part of the state, the proxy position xp is the only state
variable left, and the proxy's state-space has become one-dimensional. Strictly
speaking, s (x, t) = 0 can no longer be considered to be a sliding surface for the
massless proxy. It still describes the desired dynamics for the proxy, though. Saying
that the proxy is �on the sliding surface� can be interpreted as it accomplishing its
desired dynamics (i.e. the control goal). Saying that it is �o� the sliding surface�
then means that its dynamics don't match the desired dynamics. In the case of
PSMC, this happens when a control input higher than the imposed limit F is
required to achieve the desired dynamics.

1Before it was assumed to have zero mass.
2If the virtual coupling has an integral component, it has its own state and the dynamics of

the proxy-virtual coupling system become second order (with one state belonging to the coupling
and one to the proxy).
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Since the calculations for the real PSMC controller are quite involved, we'll illus-
trate this with a much simpler example. Assume we have the following �rst-order
system,

ẋ = u, (D.21)

with u the control input. Suppose that the desired dynamics are given by s (x, t) =
0 with

s (x, t) = (xd − x) + λ (ẋd − ẋ) .

A control law that achieves this can simply be found by substituting the dynamic
equation ẋ = u into s (x, t) = 0 and solving for u:

(xd − x) + λ (ẋd − u) = 0

or
u =

1
λ

(xd − x) + ẋd. (D.22)

Now assume that, as in PSMC, we want to impose the desired dynamics s (x, t) = 0
by a controller of the form

u = B sgn (s) . (D.23)

(with B > 0). Note that (strictly speaking) we can't call this a sliding mode
controller, since there is no �sliding mode� when s (x, t) = 0 (it can be called a
variable structure controller, though). Substitution of (D.23) in (D.21) results in

ẋ = B sgn ((xd − x) + λẋd − λẋ)

= B sgn
(
λ

(
1
λ

(xd − x) + ẋd − ẋ
))

.

By calling

u∗ =
1
λ

(xd − x) + ẋd (D.24)

and knowing that λ > 0 and B > 0 we can write this as

ẋ

B
= sgn (u∗ − ẋ)

= sgn
(
u∗

B
− ẋ

B

)
.

We can now apply (D.2), which results in

ẋ = B sat
(
u∗

B

)

=

{
u∗ if |u∗| ≤ B
B sgn (u∗) if |u∗| > B.



Proxy-Based Sliding Mode Control 197

Comparing this with (D.21) shows that control law (D.23) is equivalent to

u =

{
u∗ if |u∗| ≤ B
B sgn (u∗) if |u∗| > B.

(D.25)

Since u∗ (see eq. (D.24)) is equal to the previous control law (D.22), we see that
(D.25) is equivalent to (D.22), except that (D.25) limits the absolute value of the
control input to B. If the control input needed to achieve the desired dynamics
s (x, t) = 0 is higher (in absolute value) than B, the control goal will not be
achieved. Since s (x, t) is not zero, we can interpret this as the system state not
being �on the sliding surface�.

The example uses equivalence (D.2), on which proxy-based sliding mode control
is based, but without discretization. Let us now make the example slightly more
complex, and assume the system is given by

ẋ = −x+ u.

Substitution of control law (D.23) gives

ẋ+ x = B sgn ((xd − x) + λ (ẋd − ẋ)) .

Due to the presence of x on the left-hand side, we can't immediately use eq. (D.2)
to isolate ẋ. One possibility is to use the procedure described in section 5.2.5.
However, we can also set

u = ẋ+ x

u = B sgn ((xd − x) + λ (ẋd − ẋ))

and discretize to get (using (5.16))

u [k] =
∇x [k]
T

+ x [k] (D.26)

u [k] = B sgn
(
xd [k]− x [k] +

λ

T
(∇xd −∇x)

)
. (D.27)

From eq. (D.26) we have (cf. (5.17))

u [k] =
1
T
x [k]− 1

T
x [k − 1] + x [k]

=
1 + T

T
x [k]− 1

T
x [k − 1]

or
x [k] =

1
1 + T

x [k − 1] +
T

1 + T
u [k] . (D.28)
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Eq. (D.27) can be written as

u [k] = B sgn
(
xd [k]− x [k] +

λ

T
xd [k]− λ

T
xd [k − 1]− λ

T
x [k] +

λ

T
x [k − 1]

)

= B sgn
(
T + λ

T
xd [k]− λ

T
(xd [k − 1]− x [k − 1])− T + λ

T
x [k]

)
.

Substitution of (D.28) gives

u [k] = B sgn
(
T + λ

T
xd [k]− λ

T
(xd [k − 1]− x [k − 1])− T + λ

T (1 + T )
x [k − 1]

−T + λ

1 + T
u [k]

)

= B sgn
(
T + λ

1 + T

(
1 + T

T
xd [k]− λ (1 + T )

T (T + λ)
(xd [k − 1]− x [k − 1])

− 1
T
x [k − 1]− u [k]

))

= B sgn
(
T + λ

1 + T
(u∗ [k]− u [k])

)
with

u∗ [k] =
1 + T

T
xd [k]− λ (1 + T )

T (T + λ)
(xd [k − 1]− x [k − 1])− 1

T
x [k − 1] .

As before, this implies (using (5.2))

u [k] =

{
u∗ [k] if |u∗ [k]| ≤ B
B sgn (u∗ [k]) if |u∗ [k]| > B.

Again, if the control input u∗ [k] necessary to achieve s (x, t) = 0 exceeds B, the
desired dynamics can't be achieved and the system can be considered to be �o� the
sliding surface�.
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