
 
 

1

5th International Congress  
of Croatian Society of Mechanics 
September, 21-23, 2006 
Trogir/Split, Croatia 

  

PROJECTIVE CONSTRAINT VIOLATION STABILIZATION  
METHOD FOR MULTIBODY SYSTEMS ON MANIFOLDS 

Zdravko Terze, Joris Naudet 

Keywords:  Constrained mechanical systems, Numerical integration on manifolds, Dynamic 
simulation of multibody systems  

ABSTRACT 
Constraint gradient projective method for stabilization of constraint violation during time 

integration of multibody systems (MBS) is in focus of the paper. Mathematical model for 
constrained MBS dynamic simulation on manifolds is introduced and numerical violation of system 
kinematical constraints is discussed. As an extension of the previous work, that was focused on 
time integration of holonomic systems, the stabilization projective method is discussed in the 
context of generally constrained mechanical systems. By adopting differential-geometric point of 
view, the geometric and stabilization issues of the method are addressed. After discussing 
optimization of partitioning algorithm, it is shown that the projective stabilization method can be 
applied for numerical stabilization of holonomic and non-holonomic constraints in Pfaffian and 
general form. 

 
1. INTRODUCTION 

During dynamical simulation of constrained multibody systems, a violation of system 
kinematical constraints is the basic source of time-integration errors and frequent difficulty that 
analyst have to cope with. Baumgarte stabilization method that minimizes violations can be applied 
for this purpose, but this algorithm is dependent on empirical feedback gains and has some 
limitations [1]. Different methods that provide full stabilization of system constraints are discussed 
in [2]. The stabilized integration procedure, whose stabilization step is based on projection of the 
integration results to the underlying constraint manifold via post-integration correction of selected 
coordinates, is proposed and compared with similar integration schemes in [3]. The integration 
procedure is compatible with many ODE integrators and provides full stabilization of system 
constraint violation, but its utilization is confined to the holonomic systems only. As an extension 
of the previous work, a further elaboration of the projective stabilization method applied on 
holonomic and non-holonomic mechanical systems is reported in this paper. 
 
2. UNCONSTRAINED  MBS ON MANIFOLDS 

 
Unconstrained multibody system (MBS) is an autonomous Lagrangian system. If n DOF is 

assumed, the system evolution in configuration space nR  is described (by definition) by 
Lagrangian equations [4, 6]: 

*

d
d

Γ=
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

xx
LL

t &
, ( ) ( )t,,* xxQxx &&& =M    . (1)

 



 
 

2

By taking differentiable manifold approach, the configuration space nR  is considered to be a 
manifold nM covered by coordinate system ( )tx  (in mathematical jargon of modern differential 
geometry: locally covered by chart x ). The solution of (1) is a dynamical trajectory ( )txx ii =:T  
of the system in n-dimensional manifold of configuration nM . With every point on manifold of 
configuration, M∈x , the n dimensional tangent space MxT  is affiliated, where system virtual 
displacements xδ  and velocities x&  are contained, Mxx T∈δ , Mxx T∈d , Mxx T∈& . The 
manifold M  and the union of all tangent spaces at the various points x make another, 2n-
dimensional, manifold called tangent bundle, MM

M
U

n
TT

∈x
x: , covered by the coordinates 

xx &, : ( ){ }MMM xxxxx TT ∈∈= && ,:, [4] (being mathematically not very rigorous, tangent 
bundle can be observed as a velocity phase space known from ‘traditional’ approach).  Manifold 
M  is not a vector space. By adopting system generalized mass matrix ( )xM  (positive definite) as 
a Riemannian metric on the manifold of configuration [7], a scalar product in each tangent space 
MxT  is given by ( ) ( )zxyzy

x
MM

T, =  , Mxzy T∈, . Now, with the metric so defined, the 

tangent space MxT  (‘the fiber of the tangent bundle at point x’) becomes a local Euclidean vector 
space spanned by covariant basis 

ixĝ . By introducing a reciprocal contravariant basis i
xĝ  [4], the 

vectors in tangent spaces can be expressed using their contravariant and covariant representations 

i

ix xgx ˆˆ && = , [ ]ix&& =x , i
ix xgx ˆˆ && = , [ ]ix&& =*x , [ ]Tˆ,.....,ˆ

1 nxxx ggG = . The infinitesimal distance 

between two points on manifold (system kinematical line element) is defined  by ji
ij xxgs ddd 2 = , 

( ) [ ]ijg=xM . Being dependent both on x  and x& , the system kinetic energy 

( ) RM →nTEk :,xx &  is defined on tangent bundle nTM . It is a quadratic, positive definite form 

on each tangent space: ( ) ( ) Mxx
xxxxx TEk ∈== &&&& ,

2
1

2
1 T2 MM . 

By following a standard procedure, Lagrangian equations (1) represent mathematical model in 
minimal form, which can be turned into the 2n ODE form: 
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The solution of (2) is integral curve of the vector field ( )xf  on tangent bundle ('velocity phase 
space') for a set of Cauchy data ( )0x,0t . 

 
3. GEOMETRIC PROPERTIES OF CONSTRAINTS 
 

( ) 0x =t,Φ , ( ) rnt RRR →×:,xΦ    , (3)

Holonomic constraints (3), which are imposed on the system, restrict system configuration 
space and impose constraints at velocity level: a trajectory ( )txx ii =:T  is ‘forced to move’ on the 
n-r dimensional constraint manifold )(trn−S , ( ){ }0xx =Φ∈=− ttrn ,,)( MS , 

( )00)(,0 ttt rn−∈≥ Sx  and linear constraint equation  (4) is induced at system velocities: 

( ) τxxx =−= tt ΦΦ &,*  . (4)

      If constraints are scleronomic, i.e. ( ) 0x =Φ , the constraints at velocities take a form 

( ) 0xxx =&*Φ , which determine x̂&  as a tangent to the position constraint manifold, 
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Φ . The system is said to be a holonomic one and posses n-r degrees of 

freedom (DOF). The constraint matrix ),(* txxΦ  can be written in the form 

[ ]**
1

T* ,....,),( rt ϕϕΦ =xx ,  [ ]ii φ=*ϕ ,  i
iφ xĝˆ 1 =ϕ  . The vectors rϕϕ ˆ...,,ˆ 1  represent gradients to 

the constraint ‘hyper-surfaces’, determined in the configuration space by the equations 
( ) 0x =t,Φ , i.e. [ ]0gradˆ 1 == 1Φϕ , … , [ ]0gradˆ == rΦrϕ . The vectors *

iϕ  are linearly 

independent and span r dimensional constraint subspace r
xC  [2]. Kinematically admissible virtual 

displacements xδ  are restricted to the n-r dimensional tangent space n-rT Sx that is orthogonal to 
r
xC .  Together, subspaces r

xC  and n-rT Sx span fiber of tangent bundle of unconstrained system 
nTMx  (tangent space) at point x: 0=rn-rT xx CS I , nrn-r TT MCS xxx =U . Thus, orthogonal-

complement matrix ),( txR , ( ) [ ]rnt −= rrxR ,.....,, 1 , that satisfy complementary equation 

0xRxx =),(),(* ttΦ , can be determined where rn−rr ˆ,.....,1̂  are basis vectors of n-rT Sx [1].  In the 
case of scleronomic constraints, system velocities (not just system virtual displacements xδ ) are 
entirely contained in n-rT Sx and can be expressed with respect to the basis 

[ ]T1 ˆ,.....,ˆ rn−= rrGr only, i.e. rGzx Tˆ && = , zRx && = , where system velocities are represented via 

independent generalized velocities z&  (instead of representation xGxx Tˆ && =  that is expressed via 
basis xG  that ‘covers’ whole unconstrained tangent space nTMx ). If the constraints are rheonomic 
(constraints do depend explicitly on time, a costraint manifold rn−S  ‘moves’ within nM ), the 
velocities are not totally sunk in n-rT Sx  and can be expressed via n-rT Sx  basis and additional 
vector ),( txα  according to the equation ( )t,xαzRx += && . The further time derivative yields 
equation ( )t,xzRzRx α&&&&&&& ++=  by means of which accelerations are constrained. 

If, beside h holonomic constraints (3), the additional nh non-holonomic constraints in the form 
( ) 0xx =Ψ t,, &  are imposed on the system: 

a) they do not restrict system configuration space (system constraint manifold rn−S  maintains 
the same dimension, hr = ), 

b) they impose additional velocity constraints on holonomic constraint manifold tangent bundle 
ST ,  n-rrnn-rnhrn TT SS −−− ⊂∈ xxx& . 

 If non-holonomic constraints are linear in velocities, i.e. can be given in Pfaffian form 
( ) ( ) 0xxxB =−= tt ,,* βΨ & , the system constraint equations can be written as follows:  

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
β
τΦ

x
xB
xx &

t
t

,
,

*

*

, 
( )
( ) nht

t *
*

*

,
,

x
x

xB
x

Φ
Φ

=⎥
⎦

⎤
⎢
⎣

⎡
 , nnhh

nh
×+∈R*

xΦ  (5)

       As it was the case with systems that posses only holonomic constraints, the orthogonal-
complement matrix nhR  that satisfy complementarity equation 0Rx =nhnh

*Φ  can be determined 
via numerical methods described in literature [2, 3]. 

 
4. CONSTRAINT GRADIENT PROJECTIVE METHOD FOR STABILIZATION OF 
   CONSTRAINT VIOLATION 

 
If system governing equations are based on the mathematical models in descriptor form [3], a 

constraint violation stabilization method have to be applied during integration procedure. The 
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stabilization algorithm proposed in [3] is based on the projection of system state-point after 
integration step to the constraint manifold in the course of simulation. If constraint violation 
(specified by given numerical tolerances) occurs after step-integration phase, the ‘position’ 
stabilization step is to be performed by correcting dependent coordinates sub-vector dx via solving 
system constraint equation (3), providing thus shifting of the system state-point x back to constraint 
manifold rn−S . The procedure is then repeated at the velocity level by correcting dx&  to bring x&  in 
accordance with (4). As stabilization step final result, time-integration values xx ,&  are projected to 
the constraint manifold tangent bundle ST , thus completely satisfying constraints of the system. 
As will be seen later, a crucial point of the algorithm is appropriate selection of sub-vectors dx  and 

dx&  to provide the optimal stabilization effect. Criteria for the coordinates selection can be 
expressed geometrically: basically, every selection that returns sub-vector of dependent coordinates 

dx  whose basis vectors have non-zero projections on the constraint subspace r
xC  (corresponding 

rr ×  sub-matrix of constraint matrix x
*Φ  is non-singular) is correct one and can be used for 

stabilization procedure. Consequently, the basis vectors of variables ix  have projections on tangent 
space of constraint manifold n-rT Sx  that is complement to r

xC . If the extracted sub-vectors do not 
satisfy specified conditions, the selection is not a valid one and the calculation will fail.  

4.1. Stabilization of configuration constraints violation  

The main problem that may occur during stabilization procedure is an inadequate coordinate 
selection that may have a negative effect on the integration accuracy along the constraint manifold. 
Although, as it was explained, every partitioning that returns acceptable sub-vectors can be used for 
stabilization, a non-optimal choice of the coordinate sub-vectors may cause an increase of the 
numerical errors along the manifold during stabilization part of the integration procedure. If this 
happens, a correction of the constraint violation will be accomplished at the expense of the ‘kinetic 
motion’ accuracy obtained by the system variables xx ,&  ODE integrators. The ‘mechanism’ of 
emerging of numerical errors along configuration manifold, because of an inadequate partitioning 
during the stabilization procedure of holonomic systems, is outlined in Fig. 1, where an illustrative 
example 2M∈x , 1S  is discussed.  

 

 
 

Figure 1.  Numerical correction of configuration constraint violation 

Assuming that, starting from , an integration of ODE gives result  instead of exact 
position   , a projection on the constraint manifold 1S  by adjusting coordinate 1x  (solving 
constraint equation (3) along 1x curve) yields result   that is consistent to the constraint. If 
instead of 1x , the variable 2x  was chosen to be a dependent coordinate, an adjustment of the 
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integration result along 2x  curve would yield solution , which is also consistent to the constraint 
but contains considerable error along the manifold 1S .  A remedy for the problem of an inadequate 
selection of dependent coordinates has been described in [2], where a projective criterion to the 
coordinate partitioning method is discussed. The main idea is to determine those r coordinates 
whose direction vectors ixĝ  deliver the biggest relative projections to the r

xC  (i.e. ‘small’ value of 

pα ) and select them as dependent variables which will be adjusted during the stabilization 
procedure. By correcting the coordinates whose direction vectors align well with the constraint 
gradients, it is ensured that the correction procedure will shift a state-point of the system ‘as direct 
as possible’ to the constraint ‘hyper-surfaces’, minimizing thus an error along constraint manifold. 

4.2. Structure of partitioned sub-vectors  

So far, constraint gradient projective method has been discussed for stabilization of constraint 
violation during numerical simulation of holonomic systems only [3]. Would it be possible to apply 
proposed algorithm in the framework of simulation procedures of non-holonomic systems? In the 
case of holonomic system, if partitioned sub-vector at the position level is selected, can the same 
sub-vector be used automatically for stabilization at the velocity level as well? Is it valid in any 
case?  To get answers on these questions and gain further insight into described procedure, it is 
illustrative to observe characteristics of the proposed algorithm at the tangent bundle (6) of an 
unconstrained system: 

( ){ }MMM xxxxx TT ∈∈= && ,:, . (6)
       As explained, MT  is 2n-dimensional Riemannian manifold with a metric 

( ) ( )( )xx MMM ,diag=MT , where system ‘positions’ as well as system velocities can be studied 
[6]. If holonomic constraints are present, they are represented in MT  by sub-manifolds at 
configuration and velocity levels. These sub-manifolds determine the possible states of the system. 
By using the projective criterion for both sub-manifolds, the characteristics of the partitioning 
procedure that for a given set of coordinates MM xxx T∈∈ &,  provides the optimal 
dependent/independent sub-vectors, can be learned as follows.  

The configuration submanifold rn−S  is determined by the equation (3) i.e.                                                    

( ){ }0xx =Φ∈=− trn ,,MS  , (7)

The submanifold rn−V , by means of which the system velocities x&  are constrained, is defined 
by (4), thus 

( ){ }τxxx xx =Φ∈=− && tTrn ,, *MV  . (8)

       If constraint gradient projective method is to be applied for stabilization purposes at both 
levels, the projective criterion will be based on determination of the gradients to the constraint sub-
manifolds rn−S and rn−V  respectively (as explained, this is because the extraction of the 
dependent coordinates of dx  and dx&  depend on the directions of gradients to the ‘hyper-surfaces’ 
of sub-manifolds rn−S and rn−V ). Since constraint submanifold rn−S  is determined by (3), the x  
correction gradient by means of which dx  is to be extracted is given by (9). Similarly, x&  
correction gradient for an extraction of dx&  is determined by (10): 

( )[ ] ),(,grad tt xΦ0xΦ *
x==     ,     ( )[ ] ),(,grad ** tt xΦτxxΦ xx ==& . (9),(10)

      Now, if the expressions (9) and (10) are compared, it is obvious that the both hyper-surfaces 
rn−S and rn−V  possess the same gradients for every point in MT  (in fact, the both gradients 

depend on the current position M∈x at the configuration manifold and t only, i.e. they are 
independent on system velocities x& ). Of course, this stems from the fact that, in the case of 
holonomic systems, the velocity submanifold rn−V  is determined by algebraic equations (4) 



 
 

6

(linear in x&  !) which are, in turn, obtained by derivation of configuration  constraints (3). Since the 
gradients to the both hyper-surfaces rn−S and rn−V are identical, which is valid also for directions 
of the basis vectors at both levels, it is clear that the same optimal dependent/independent sub-
vectors for ‘positions’ and velocities will be extracted during the process. This means that, once the 
partitioning procedure is performed for optimal position sub-vector dx , the algorithm is not needed 
to be repeated at the velocity level (the subvector dx& of the same structure is to be chosen for the 
stabilization of velocities).  
        A constraint gradient projective method can also be applied for stabilization of constraint 
violation of non-holonomic systems. As explained, if additional nh non-holonomic constraints are 
given in Pfaffian form, the submanifold nhrn −−V  of the velocity constraints is defined by (11), 
which yields velocity correction gradient in the form (12 ):                    
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       Since non-holonomic constraints do not affect configuration manifold rn−S , the ‘position’ 
coordinates correction gradient is given by (9). By comparing correction gradients (9) and (12), it 
can be concluded that they do not match any more. Thus, in the case of non-holonomic systems the 
optimal coordinates partitioning will not ‘return’ dependent/independent subvectors of the same 
structure for configuration and velocity stabilization. Beside non-equality of dimension of the sub-
vectors rR∈dx  and nhr+∈Rdx& , their structure will also differ in general case. Generally, in the 
case of non-holonomic systems, a separate partitioning procedure is necessary for stabilization at 
configuration and velocity level. This is specially true if the imposed non-holonomic constraints are 
non-linear in velocities and can not be put in Pfaffian form.                                                                                                   

 
5. NUMERICAL EXAMPLE 

 
      To illustrate characteristics of the projective stabilization method, when applied in the 
framework of dynamic simulation of non-holonomic systems, a numerical example of a snakeboard 
that has been controlled to move along the specified path, is presented in [5].  The snakeboard is 
modelled as multibody system with 4 bodies connected to each other by means of pin-joints. There 
is one coupler, two small boards with wheels and one rotor on the coupler to model dynamical 
excitation of human body torso motion. The two pairs of wheels cannot slide and therefore impose 
two non-holonomic constraints on the system. On the configuration level, the snakeboard possess 6 
DOF (Fig. 2).  

 
                                     Figure 2. Non-holonomic mechanical system: snakeboard 
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To propel the snakeboard, a rider first needs to move his feet to get the wheels in an 
appropriate direction. By turning his torso (modeled here by the rotor mounted on the coupler), the 
snakeboard then moves according to the wheel angles. A simulation with such propulsion has been 
obtained with initial values 0=== byx φ , 6.1=ψ rad, 4πθ = rad and 1.0=fφ rad and 
sinusoidal torques applied on the rotor and the wheel-boards. The frequency of the actuations is 
1Hz and the simulation period is 2s.  
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6

8

10

12

14

Time(s)

C
oo

rd
in

at
es

 (
m

 o
r 

ra
d)

x
y
θ
ψ
φ

B
φ

F

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

S
qu

ar
ed

 r
el

at
iv

e 
pr

oj
ec

tio
ns

d
x

d
y

dθ
. 
. 

. 

 
        Figure 3. Evolution of the coordinates in time              Figure 4.  Evolution of the projections d 

 
This results in a relatively slow motion along the x-axis (Fig. 2). The projective method has 

been applied on this simulation, but choice of the independent velocities for solving 
holonomic/non-holonomic velocity constraints did not to have a significant influence on the quality 
of the results. This is due to the small magnitudes of the velocities involved in the constraint 
equations. 

To demonstrate the effect of the projective stabilization method, a different numerical case is 
discussed in the sequel. This case-study describes a less natural motion, as actuation is provided by 
a force ( )yx ff=f  with constant amplitude acting on the centre of mass of the snakeboard and 

varying orientation parallel to the coupler, towards the front wheels. Springs with a constant of 0.1 
Nm/rad are added at the wheel boards to keep the initial relative angles between wheels and 
coupler. Another spring with a constant of 1 Nm/rad has also been added between the coupler and 
the rotor. The initial values are 0==== byx φθ , 2.0=ψ rad and 3πφ =f rad. 

The simulation has been run under 4 different ODE numerical integrations. First, an Runge-
Kutta (4,5) algorithm with variable stepsize was used, to obtain a reference simulation S1 (Fig. 3). 
The absolute and relative tolerances were set to 1e-13. To test the stabilization procedures, the 
equations of motion have subsequently numerically integrated without stabilization (S2), with 
stabilization using the optimal choice of independent coordinates (S3) and with stabilization using 
an other possible choice of independent coordinates (S4). For these simulations, a fourth order 
Runge-Kutta integration scheme was used with a fixed stepsize of 0.01 seconds.  In this simulation, 
the snakeboard  performs a circular motion. 

The velocities ψ& , bφ&  and fφ&  do not appear in the two constraint equations and are therefore 
independent. The fourth independent coordinate for simulation S3 was chosen amongst x& , y&  and 
θ&  using the projective criterion. The squared relative projections d  of the direction vectors on the 
tangent subspace are shown on Figure 4. For simulation S3, the biggest projection was used to 
choose the independent velocity, it was alternatively x&  and y& . 
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              Figure 5. Constraint violation errors                      Figure 6. Errors along trajectories. 
  

In Figure 5, the constraint violations errors are shown for the simulations cases with and 
without stabilization of the constraint violation errors (S2), (S3). It is shown that for the stabilized 
(S3) case, the errors are theoretically zero. For the simulation without stabilization, we see growing 
of violation errors. During simulation (S4), the second biggest projection (Fig. 4) was used as the 
independent velocity. Although this choice is valid and eliminates the constraint violation errors, it 
is not optimal one and it introduces larger errors along the trajectory (Fig. 6). Of course, the 
propagation of these errors may be attempted to be controlled by tuning ODE integrator numerical 
parameters, but Fig. 6 shows a typical situation with non-optimized partitioning choice.    

 
6. CONCLUSION 
    The issues of geometric and stabilization characteristics of the constraint gradient projective 
method, which has been used as the stabilization procedure within time-integration method 
proposed in [3], have been addressed in the paper. By adopting differential-geometric point of 
view, a ‘mechanism’ of emerging of numerical errors along the ‘position’ configuration manifold 
during projection step have been discussed, along with the issue of stabilization of the constraints at 
the velocity level. In the case of simulation of holonomic systems, the optimal coordinate 
partitioning returns sub-vectors of the same structure at the both position and velocity level. 
Generally, in the case of non-holonomic systems, the constraint gradient projective method should 
be performed separately for each stabilization level. This is specially true if the imposed non-
holonomic constraints can not be put in Pfaffian form. 
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